Real-time indices focus on slag flowability and coke strength for blast furnace operation

2019 ◽  
Vol 116 (6) ◽  
pp. 625
Author(s):  
Jia-Shyan Shiau

It was well known that abnormal burden quality has a significant impact on the blast furnace (BF) permeability resulting in bad slag flowability and HM tapping, and the coke fines inside BF become much finer to reduce HM production and BF life when the coke strength is weak. Therefore, it is necessary to develop the real-time operation indices of the slag flowability and coke strength after reaction (CSR) in a lower part of BF. BF slag flowability was determined with liquidus temperature and viscosity from measured semi-synthetic slags (SiO2-Al2O3-CaO-MgO-TiO2), and the effects of MgO content, Al2O3 content and CaO/SiO2 on slag flowability are investigated according to the model equations derived from above measured data by using multiple-regression method. A real-time index combined with viscosity and liquidus temperature has been also designed to indicate appropriate slag flowability. In addition, a coke sampler was used to collect the coke samples at tuyere level to analyze the strength of BF bosh coke at various HM productivities. CSR quantitative target and its online index were obtained from the data of sampling coke properties, BF operation conditions and BF permeability to provide real-time reference for coke and HM production.

2017 ◽  
Vol 53 (2) ◽  
pp. 131-138 ◽  
Author(s):  
J-S. Shiau ◽  
Y-C. Ko ◽  
C-K. Ho ◽  
M-T. Hung

Raising pulverized coal injection (PCI) will decrease coke rate, but increase the residence time of coke and abrasion in the blast furnace (BF). Thus, insufficient coke strength will generate more coke fines in the lower BF and result in lower permeability and production of hot metal (HM). For understanding the behavior of coke at various HM productivities, a tuyere coke sampler was used to collect the coke samples for measuring the coke strength. Firstly, the difference of sampled coke under the conditions of various HM productivities was explored. Secondly, the BF operating conditions and causes of generating more coke fines was correlated by testing the coke reaction rate after reaction. Finally, according to the above analysis results, the relative regression equations had been obtained for sampling coke properties, BF operation conditions and BF permeability. Furthermore, the coke strength after reaction (CSR) quantitative target and its online system at various blast conditions were set to provide some reference for coke and HM production.


2015 ◽  
Vol 24 (6) ◽  
pp. 1703-1711 ◽  
Author(s):  
Rosana Alves Dias ◽  
Filipe Serra Alves ◽  
Margaret Costa ◽  
Helder Fonseca ◽  
Jorge Cabral ◽  
...  

2018 ◽  
Author(s):  
J. I. Alvarez Claramunt ◽  
P. E. Bizzotto ◽  
F. Sapag ◽  
E. Ferrigno ◽  
J. L. Barros ◽  
...  

2017 ◽  
Vol 10 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Shouhei Kidera ◽  
Luz Maria Neira ◽  
Barry D. Van Veen ◽  
Susan C. Hagness

Microwave ablation is widely recognized as a promising minimally invasive tool for treating cancer. Real-time monitoring of the dimensions of the ablation zone is indispensable for ensuring an effective and safe treatment. In this paper, we propose a microwave imaging algorithm for monitoring the evolution of the ablation zone. Our proposed algorithm determines the boundary of the ablation zone by exploiting the time difference of arrival (TDOA) between signals received before and during the ablation at external antennas surrounding the tissue, using the interstitial ablation antenna as the transmitter. A significant advantage of this method is that it requires few assumptions about the dielectric properties of the propagation media. Also the simplicity of the signal processing, wherein the TDOA is determined from a cross-correlation calculation, allows real-time monitoring and provides robust performance in the presence of noise. We investigate the performance of this approach for the application of breast tumor ablation. We use simulated array measurements obtained from finite-difference time-domain simulations of magnetic resonance imaging-derived numerical breast phantoms. The results demonstrate that our proposed method offers the potential to achieve millimeter-order accuracy and real-time operation in estimating the boundary of the ablation zone in heterogeneous and dispersive breast tissue.


2017 ◽  
Vol 5 (5) ◽  
pp. 320-325
Author(s):  
Ahmad T. Jaiad ◽  
Hamzah Sabr Ghayyib

Water is the most precious and valuable because it’s a basic need of all the human beings but, now a day water supply department are facing problem in real time operation this is because less amount of water in resources due to less rain fall. With increase in Population, urban residential areas have increased because of this reasons water has become a crucial problem which affects the problem of water distribution, interrupted water supply, water conservation, water consumption and also the water quality so, to overcome water supply related problems and make system efficient there is need of proper monitoring and controlling system. In this project, we are focusing on continuous and real time monitoring of water supply in IOT platform. Water supply with continuous monitoring makes a proper distribution so that, we can have a record of available amount of water in tanks, flow rate, abnormality in distribution line. Internet of things is nothing but the network of physical objects embedded with electronics, sensors, software, and network connectivity. Monitoring can be done from anywhere as central office. Using Adafruit as free sever data continuously pushed on cloud so we can see data in real time operation. Using different sensors with controller and raspberry pi as Mini computer can monitor data and also control operation from cloud with efficient client server communication.


Sign in / Sign up

Export Citation Format

Share Document