Additive manufacturing of Inconel625-HSLA Steel functionally graded material by wire arc additive manufacturing

2021 ◽  
Vol 118 (5) ◽  
pp. 502
Author(s):  
Jiarong Zhang ◽  
Xinjie Di ◽  
Chengning Li ◽  
Xipeng Zhao ◽  
Lingzhi Ba ◽  
...  

Functional graded materials (FGMs) have been widely applied in many engineering fields, and are very potential to be the substitutions of dissimilar metal welding joints due to their overall performance. In this work, the Inconel625-high-strength low-alloy (HSLA) Steel FGM was fabricated by wire arc additive manufacturing (WAAM). The chemical composition distribution, microstructure, phase evolution and mechanical properties of the FGM were examined. With the increasing of HSLA Steel, the chemical composition appeared graded distribution, and the primary dendrite spacing was largest in graded region with 20%HSLA Steel and then gradually decreased. And the main microstructure of the FGM transformed from columnar dendrites to equiaxed dendrites. Laves phase precipitated along dendrites boundary when the content of HSLA Steel was lower than 70% and Nb-rich carbides precipitated when the content of HSLA Steel exceeded to 70%. Microhardness and tensile strength gradually decreased with ascending content of HSLA Steel, and had a drastic improvement (159HV to 228HV and 355Mpa to 733Mpa) when proportion of HSLA Steel increased from 70% to 80%.

2008 ◽  
Vol 368-372 ◽  
pp. 1823-1824 ◽  
Author(s):  
Xin He ◽  
Hai Yan Du ◽  
Wei Wang ◽  
Wei Jing ◽  
Chang Liu

TZP/SUS304 functionally graded material (FGM) was developed by slip casting. Microscopic observations demonstrated that the chemical composition and microstructure of TZP/SUS FGM distributed gradually in stepwise way, eliminating the macroscopic ceramic/metal interface occurred in traditional ceramic/metal joint. Each interface of layers connected well without evident defects, and the mechanical properties of TZP/SUS system strongly depended on constitutional variation.


Author(s):  
Pierre Muller ◽  
Pascal Mognol ◽  
Jean-Yves Hascoet

Recent developments in additive manufacturing processes add opportunities to manufacture metallic parts. One of major recent evolutions of additive manufacturing is the ability to produce parts with functionally graded materials (FGM). These materials can be characterized by the variation in composition and structure gradually over the volume. The use of these materials is particularly attractive in fields such as aeronautical or biomedical where the multi-material parts allow modifying locally mechanical, chemical, physical or biochemical properties. Today, main of parts with FGM which are manufactured with these processes are not functional, with simple morphology, small dimensions and discrete multi-material repartition. To move from these samples to functional parts it is necessary to have a global control of the process used. It includes the control of all parameters — laser power, powder and gas flow rates, axis motions — and a manufacturing with an optimal strategy. A methodology to manufacture multi-material complex parts is proposed so as to have this global approach.


Author(s):  
Binbin Zhang ◽  
Prakhar Jaiswal ◽  
Rahul Rai ◽  
Saigopal Nelaturi

Functionally graded materials (FGM) have recently attracted a lot of research attention in the wake of the recent prominence of additive manufacturing (AM) technologies. The continuously varying spatial composition profile of two or more materials affords FGM to possess properties of multiple different materials simultaneously. Emerging AM technologies enable manufacturing complex shapes with customized multifunctional material properties in an additive fashion. In this paper, we focus on providing an overview of research at the intersection of AM techniques and FGM objects. We specifically discuss FGM modeling representation schemes and outline a classification system to classify existing FGM representation methods. We also highlight the key aspects such as the part orientation, slicing, and path planning processes that are essential for fabricating FGM object through the use of multimaterial AM techniques.


Materials ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 1368 ◽  
Author(s):  
Uwe Scheithauer ◽  
Steven Weingarten ◽  
Robert Johne ◽  
Eric Schwarzer ◽  
Johannes Abel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document