scholarly journals Equilibrium joining strategies in the single-server constant retrial queues with Bernoulli vacations

Author(s):  
Ke Sun ◽  
Jinting Wang

We consider the equilibrium joining strategies in an M/M/1 constant retrial queue with Bernoulli vacations. There is no buffer in front of the server, thus an arriving customer will be served immediately if the server is available, and blocked ones wait in a queue if the server is busy or under vacation. The queue length information of orbit is observable to customers upon their arrivals. Then, blocked customers decide whether to join the orbit or not based on a reward-cost structure and their information level. After completing service, the server begins a vacation or remains available and it becomes available again when a vacation ends. The available server seeks to serve the customer in the head of the orbit queue. During the seeking process, an external arrival can interrupt it and obtain service. Our goal is to explore equilibrium behavior of customers in two information cases, fully observable case and almost observable case, which corresponding to whether blocked arrivals can differentiate the state of unavailable server. We obtain the threshold strategies of blocked customers in two information cases and provide numerical experiments to characterize the influence of different parameters on the equilibrium joining strategies.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Fang Wang ◽  
Jinting Wang ◽  
Feng Zhang

This paper is concerned with the equilibrium balking strategies of customers in a Geo/Geo/1 queue with single working vacation. Instead of completely stopping service, the server works with a small probability during the working vacation period. As soon as no customers exist in the system, the server takes a single vacation. The customers decide for themselves whether to enter the system or balk based on a natural reward-cost structure, the information available about the status of the server, and the queue length on hand upon arrival. We obtain the equilibrium balking strategies in two cases: fully observable and fully unobservable cases, which depend on whether the customers know both the queue length and the state of the server or none of them. Finally, we present several numerical experiments that demonstrate the effect of some parameters on the equilibrium behavior.


1993 ◽  
Vol 25 (03) ◽  
pp. 690-701 ◽  
Author(s):  
Huei-Mei Liang ◽  
V. G. Kulkarni

A single-server retrial queue consists of a primary queue, an orbit and a single server. Assume the primary queue capacity is 1 and the orbit capacity is infinite. Customers can arrive at the primary queue either from outside the system or from the orbit. If the server is busy, the arriving customer joins the orbit and conducts a retrial later. Otherwise, he receives service and leaves the system. We investigate the stability condition for a single-server retrial queue. Let λ be the arrival rate and 1/μ be the mean service time. It has been proved that λ / μ < 1 is a sufficient stability condition for the M/G /1/1 retrial queue with exponential retrial times. We give a counterexample to show that this stability condition is not valid for general single-server retrial queues. Next we show that λ /μ < 1 is a sufficient stability condition for the stability of a single-server retrial queue when the interarrival times and retrial times are finite mixtures of Erlangs.


2016 ◽  
Vol 33 (05) ◽  
pp. 1650036 ◽  
Author(s):  
Gopinath Panda ◽  
Veena Goswami ◽  
Abhijit Datta Banik

In this paper, we consider customers’ equilibrium and socially optimal behavior in a single-server Markovian queue with multiple vacations and sequential abandonments. Upon arrival customers decide for themselves whether to join or balk, based on the level of information available to them. During the server’s vacation, present customers become impatient and decide sequentially whether they will abandon the system or not upon the availability of a secondary transport facility. Assuming the linear reward-cost structure, we analyze the equilibrium balking strategies of customers under four cases: fully and almost observable as well as fully and almost unobservable. In all the above cases, the individual and social optimal strategies are derived. Finally, the dependence of performance measures on system parameters are demonstrated via numerical experiments.


1993 ◽  
Vol 25 (3) ◽  
pp. 690-701 ◽  
Author(s):  
Huei-Mei Liang ◽  
V. G. Kulkarni

A single-server retrial queue consists of a primary queue, an orbit and a single server. Assume the primary queue capacity is 1 and the orbit capacity is infinite. Customers can arrive at the primary queue either from outside the system or from the orbit. If the server is busy, the arriving customer joins the orbit and conducts a retrial later. Otherwise, he receives service and leaves the system.We investigate the stability condition for a single-server retrial queue. Let λ be the arrival rate and 1/μ be the mean service time. It has been proved that λ/μ < 1 is a sufficient stability condition for the M/G/1/1 retrial queue with exponential retrial times. We give a counterexample to show that this stability condition is not valid for general single-server retrial queues. Next we show that λ /μ < 1 is a sufficient stability condition for the stability of a single-server retrial queue when the interarrival times and retrial times are finite mixtures of Erlangs.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Zhengwu Zhang ◽  
Jinting Wang ◽  
Feng Zhang

We consider a single-server constant retrial queueing system with a Poisson arrival process and exponential service and retrial times, in which the server may break down when it is working. The lifetime of the server is assumed to be exponentially distributed and once the server breaks down, it will be sent for repair immediately and the repair time is also exponentially distributed. There is no waiting space in front of the server and arriving customers decide whether to enter the retrial orbit or to balk depending on the available information they get upon arrival. In the paper, Nash equilibrium analysis for customers’ joining strategies as well as the related social and profit maximization problems is investigated. We consider separately the partially observable case where an arriving customer knows the state of the server but does not observe the exact number of customers waiting for service and the fully observable case where customer gets informed not only about the state of the server but also about the exact number of customers in the orbit. Some numerical examples are presented to illustrate the effect of the information levels and several parameters on the customers’ equilibrium and optimal strategies.


2014 ◽  
Vol 31 (02) ◽  
pp. 1440003
Author(s):  
ZHE DUAN ◽  
MELIKE BAYKAL-GÜRSOY

We reconsider the M/M/∞ queue with two-state Markov modulated arrival and service processes and the single-server retrial queue analyzed in Keilson and Servi [Keilson, J and L Servi (1993). The matrix M/M/∞ system: Retrial models and Markov modulated sources. Advances in Applied Probability, 25, 453–471]. Fuhrmann and Cooper type stochastic decomposition holds for the stationary occupancy distributions in both queues [Keilson, J and L Servi (1993). The matrix M/M/∞ system: Retrial models and Markov modulated sources. Advances in Applied Probability, 25, 453–471; Baykal-Gürsoy, M and W Xiao (2004). Stochastic decomposition in M/M/∞ queues with Markov-modulated service rates. Queueing Systems, 48, 75–88]. The main contribution of the present paper is the derivation of the explicit form of the stationary system size distributions. Numerical examples are presented visually exhibiting the effect of various parameters on the stationary distributions.


2018 ◽  
Vol 7 (2.21) ◽  
pp. 172
Author(s):  
V Vijayalakshmi ◽  
K Kalidass

In this article the behaviour of a single server vacation queue with geometric abandonments and Bernoulli’s feedbacks is carried out and various important performance measures are derived. Some numerical experiments are presented to study how the parameters of the model influence the state of the system. 


2010 ◽  
Vol 27 (03) ◽  
pp. 335-345 ◽  
Author(s):  
J. R. ARTALEJO ◽  
J. A. C. RESING

Mean value analysis is an elegant tool for determining mean performance measures in queueing models. In this paper we show how mean value analysis can be applied to retrial queues. First, we illustrate the technique for the standard M/G/1 retrial queue with exponential retrial times. After that we show how the relations can be adapted to obtain mean performance measures in more advanced M/G/1-type retrial queues.


2014 ◽  
Vol 31 (02) ◽  
pp. 1440005 ◽  
Author(s):  
VELIKA I. DRAGIEVA

The object of this paper is to continue investigation of a single server retrial queue with finite number of sources in which the server is subjected to breakdowns and repairs. The server life time as well as the intervals between repetitions are exponentially distributed, while the repair and the service times are generally distributed. Using the formulas for the stationary system state distributions, obtained by Wang et al. [in Wang, J, L Zhao and F Zhang (2011). Analysis of the finite source retrial queues with server breakdowns and repairs. Journal of Industrial and Management Optimization, 7, 655–676.] we investigate the distribution of the number of retrials, made by a customer before he reaches the server free. Recurrent schemes for computing this distribution in steady state as well as any arbitrary of its moments are established. Numerical results for five different distributions of the service and repair times are also presented.


2006 ◽  
Vol 16 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Natalia Djellab

In this work, we review the stochastic decomposition for the number of customers in M/G/1 retrial queues with reliable server and server subjected to breakdowns which has been the subject of investigation in the literature. Using the decomposition property of M/G/1 retrial queues with breakdowns that holds under exponential assumption for retrial times as an approximation in the non-exponential case, we consider an approximate solution for the steady-state queue size distribution.


Sign in / Sign up

Export Citation Format

Share Document