scholarly journals Modified election algorithm in hopfield neural network for optimal random k satisfiability representation

Author(s):  
Hamza Abubakar ◽  
Shamsul Rijal Muhammad Sabri ◽  
Sagir Abdu Masanawa ◽  
Surajo Yusuf

Election algorithm (EA) is a novel metaheuristics optimization model motivated by phenomena of the socio-political mechanism of presidential election conducted in many countries. The capability and robustness EA in finding an optimal solution to optimization has been proven by various researchers. In this paper, modified version of EA has been utilized in accelerating the searching capacity of Hopfield neural network (HNN) learning phase for optimal random-kSAT logical representation (HNN-R2SATEA). The utility of the proposed approach has been contrasted with the current standard exhaustive search algorithm (HNN-R2SATES) and the newly developed algorithm HNN-R2SATICA. From the analysis obtained, it has been clearly shown that the proposed hybrid computational model HNN-R2SATEA outperformed other existing model in terms of global minima ratio (Zm), mean absolute error (MAE), Bayesian information criterion (BIC) and execution time (ET). The finding portrays that the MEA algorithm surpassed the other two algorithms for optimal random-kSAT logical representation.

Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 568 ◽  
Author(s):  
Saratha Sathasivam ◽  
Mohd. Asyraf Mansor ◽  
Mohd Shareduwan Mohd Kasihmuddin ◽  
Hamza Abubakar

Election Algorithm (EA) is a novel variant of the socio-political metaheuristic algorithm, inspired by the presidential election model conducted globally. In this research, we will investigate the effect of Bipolar EA in enhancing the learning processes of a Hopfield Neural Network (HNN) to generate global solutions for Random k Satisfiability (RANkSAT) logical representation. Specifically, this paper utilizes a bipolar EA incorporated with the HNN in optimizing RANkSAT representation. The main goal of the learning processes in our study is to ensure the cost function of RANkSAT converges to zero, indicating the logic function is satisfied. The effective learning phase will affect the final states of RANkSAT and determine whether the final energy is a global minimum or local minimum. The comparison will be made by adopting the same network and logical rule with the conventional learning algorithm, namely, exhaustive search (ES) and genetic algorithm (GA), respectively. Performance evaluation analysis is conducted on our proposed hybrid model and the existing models based on the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Sum of Squared Error (SSE), and Mean Absolute Error (MAPE). The result demonstrates the capability of EA in terms of accuracy and effectiveness as the learning algorithm in HNN for RANkSAT with a different number of neurons compared to ES and GA.


Author(s):  
Hamza Abubakar ◽  
Saratha Sathasivam ◽  
Mohd. Asyraf Mansor ◽  
Mohd Shareduwan Mohd Kasihmuddin

Election Algorithm (EA) is a powerful metaheuristics model motivated by phenomena of the socio-political mechanism of the presidential election conducted in many countries. EA is selected as a topic of discussion due to its capability and robustness to carry out complex problems in the random-2SAT logic program. This paper utilizes a hybridized EA assimilated with the Hopfield neural network (HNN) in carrying out random logic program (HNN-R2SATEA). The efficiency of the proposed method was compared with the existing traditional exhaustive search (HNN-R2SATES) model and the recently introduced HNN-R2SATICA model. From the result obtained, clearly proven that based on our proposed hybrid model outperformed other existing model based on the Global Minima Ratio (ZM), Mean Absolute Error (MAE), Bayesian Information Criterion (BIC) and Execution Time (ET). The expected outcome portrays that the EA algorithm outperformed the other two algorithms in doing random-kSAT logic program. The results proved the robustness, effectiveness, and compatibility of the HNN-R2SATEA model.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 341-356
Author(s):  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in the study are settlement and dipped joint. Features used to detect and evaluate the severity of combined defects are axle box accelerations simulated using a verified rolling stock dynamic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical data. Deep learning techniques used in the study are deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways: simplified data and raw data. Simplified data are used to develop the DNN model, while raw data are used to develop the CNN and RNN model. For simplified data, features are extracted from raw data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified data for developing the DNN model. For raw data, time-domain accelerations are used directly to develop the CNN and RNN models without processing and data extraction. Hyperparameter tuning is performed to ensure that the performance of each model is optimized. Grid search is used for performing hyperparameter tuning. To detect the combined defects, the study proposes two approaches. The first approach uses one model to detect settlement and dipped joint, and the second approach uses two models to detect settlement and dipped joint separately. The results show that the CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies classification and regression concepts. Classification is used to evaluate the severity by categorizing defects into light, medium, and severe classes, and regression is used to estimate the size of defects. From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1292
Author(s):  
Muna Mohammed Bazuhair ◽  
Siti Zulaikha Mohd Jamaludin ◽  
Nur Ezlin Zamri ◽  
Mohd Shareduwan Mohd Kasihmuddin ◽  
Mohd. Asyraf Mansor ◽  
...  

One of the influential models in the artificial neural network (ANN) research field for addressing the issue of knowledge in the non-systematic logical rule is Random k Satisfiability. In this context, knowledge structure representation is also the potential application of Random k Satisfiability. Despite many attempts to represent logical rules in a non-systematic structure, previous studies have failed to consider higher-order logical rules. As the amount of information in the logical rule increases, the proposed network is unable to proceed to the retrieval phase, where the behavior of the Random Satisfiability can be observed. This study approaches these issues by proposing higher-order Random k Satisfiability for k ≤ 3 in the Hopfield Neural Network (HNN). In this regard, introducing the 3 Satisfiability logical rule to the existing network increases the synaptic weight dimensions in Lyapunov’s energy function and local field. In this study, we proposed an Election Algorithm (EA) to optimize the learning phase of HNN to compensate for the high computational complexity during the learning phase. This research extensively evaluates the proposed model using various performance metrics. The main findings of this research indicated the compatibility and performance of Random 3 Satisfiability logical representation during the learning and retrieval phase via EA with HNN in terms of error evaluations, energy analysis, similarity indices, and variability measures. The results also emphasized that the proposed Random 3 Satisfiability representation incorporates with EA in HNN is capable to optimize the learning and retrieval phase as compared to the conventional model, which deployed Exhaustive Search (ES).


Author(s):  
Vigneshwer Kathirvel ◽  
Mohd. Asyraf Mansor ◽  
Mohd Shareduwan Mohd Kasihmuddin ◽  
Saratha Sathasivam

Imperialist Competitive algorithm (ICA) is a robust training algorithm inspired by the socio-politically motivated strategy. This paper focuses on utilizing a hybridized ICA with Hopfield Neural Network on a 3-Satisfiability (3-SAT) logic programming. Eventually the performance of the proposed algorithm will be compared to other 2 algorithms, which are HNN-3SATES (ES) and HNN-3SATGA (GA). The performance shall be evaluated with the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Sum of Squares Error (SSE), Schwarz Bayesian Criterion (SBC), Global Minima Ratio and Computation Time (CPU time). The expected outcome will portray that the IC algorithm will outperform the other two algorithms in doing 3-SAT logic programming.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ludi Wang ◽  
Wei Zhou ◽  
Ying Xing ◽  
Xiaoguang Zhou

The prevention, evaluation, and treatment of hypertension have attracted increasing attention in recent years. As photoplethysmography (PPG) technology has been widely applied to wearable sensors, the noninvasive estimation of blood pressure (BP) using the PPG method has received considerable interest. In this paper, a method for estimating systolic and diastolic BP based only on a PPG signal is developed. The multitaper method (MTM) is used for feature extraction, and an artificial neural network (ANN) is used for estimation. Compared with previous approaches, the proposed method obtains better accuracy; the mean absolute error is 4.02 ± 2.79 mmHg for systolic BP and 2.27 ± 1.82 mmHg for diastolic BP.


Biometrics ◽  
2017 ◽  
pp. 1543-1561 ◽  
Author(s):  
Mrutyunjaya Panda ◽  
Aboul Ella Hassanien ◽  
Ajith Abraham

Evolutionary harmony search algorithm is used for its capability in finding solution space both locally and globally. In contrast, Wavelet based feature selection, for its ability to provide localized frequency information about a function of a signal, makes it a promising one for efficient classification. Research in this direction states that wavelet based neural network may be trapped to fall in a local minima whereas fuzzy harmony search based algorithm effectively addresses that problem and able to get a near optimal solution. In this, a hybrid wavelet based radial basis function (RBF) neural network (WRBF) and feature subset harmony search based fuzzy discernibility classifier (HSFD) approaches are proposed as a data mining technique for image segmentation based classification. In this paper, the authors use Lena RGB image; Magnetic resonance image (MR) and Computed Tomography (CT) Image for analysis. It is observed from the obtained simulation results that Wavelet based RBF neural network outperforms the harmony search based fuzzy discernibility classifiers.


2020 ◽  
Vol 27 ◽  
pp. 1485-1489 ◽  
Author(s):  
Jun Qi ◽  
Jun Du ◽  
Sabato Marco Siniscalchi ◽  
Xiaoli Ma ◽  
Chin-Hui Lee

Sign in / Sign up

Export Citation Format

Share Document