scholarly journals On the nightglow polarisation for space weather exploration

2020 ◽  
Vol 10 ◽  
pp. 35
Author(s):  
Léo Bosse ◽  
Jean Lilensten ◽  
Nicolas Gillet ◽  
Sylvain Rochat ◽  
Alain Delboulbé ◽  
...  

We present here observations of the polarisation of four auroral lines in the auroral oval and in the polar cusp using a new ground polarimeter called Petit Cru. Our results confirm the already known polarisation of the red line, and show for the first time that the three other lines observed here (namely 557.7 nm, 391.4 nm and 427.8 nm) are polarised as well up to a few percent. We show that in several circumstances, this polarisation is linked to the local magnetic activity and to the state of the ionosphere through the electron density measured with EISCAT. However, we also show that the contribution of light pollution from nearby cities via scattering can not be ignored and can play an important role in polarisation measurements. This series of observations questions the geophysical origin of the polarisation. It also leaves open its relation to the magnetic field orientation and to the state of both the upper atmosphere and the troposphere.

Author(s):  
Henrik Melin

We review the current understanding of the upper atmospheres of Uranus and Neptune, and explore the upcoming opportunities available to study these exciting planets. The ice giants are the least understood planets in the solar system, having been only visited by a single spacecraft, in 1986 and 1989, respectively. The upper atmosphere plays a critical role in connecting the atmosphere to the forces and processes contained within the magnetic field. For example, auroral current systems can drive charged particles into the atmosphere, heating it by way of Joule heating. Ground-based observations of H 3 + provides a powerful remote diagnostic of the physical properties and processes that occur within the upper atmosphere, and a rich dataset exists for Uranus. These observations span almost three decades and have revealed that the upper atmosphere has continuously cooled between 1992 and 2018 at about 8 K/year, from approximately 750 K to approximately 500 K. The reason for this trend remain unclear, but could be related to seasonally driven changes in the Joule heating rates due to the tilted and offset magnetic field, or could be related to changing vertical distributions of hydrocarbons. H 3 + has not yet been detected at Neptune, but this discovery provides low-hanging fruit for upcoming facilities such as the James Webb Space Telescope and the next generation of 30 m telescopes. Detecting H 3 + at Neptune would enable the characterization of its upper atmosphere for the first time since 1989. To fully understand the ice giants, we need dedicated orbital missions, in the same way the Cassini spacecraft explored Saturn. Only by combining in situ observations of the magnetic field with in-orbit remote sensing can we get the complete picture of how energy moves between the atmosphere and the magnetic field. This article is part of a discussion meeting issue ‘Future exploration of ice giant systems’.


1994 ◽  
Vol 21 (24) ◽  
pp. 2761-2764 ◽  
Author(s):  
F. V. Coroniti ◽  
E. W. Greenstadt ◽  
S. L. Moses ◽  
B. T. Tsurutani ◽  
E. J. Smith

1990 ◽  
Vol 140 ◽  
pp. 79-80
Author(s):  
M. F. Bietenholz ◽  
P. P. Kronberg

We present and describe recent radio observations of the Crab Nebula, which allow us to determine the magnetic field orientation and depolarization at unprecedented resolution. The observations were made in 1987-1988 using all four configurations of the VLA, at 1410,1515,4625, and 4885 MHz. The resulting maps were all convolved with a clean beam of 1.8″ × 2.0″, elongated in P.A. 80°, and the residuals added back in.


1999 ◽  
Vol 559 ◽  
Author(s):  
Derek M. Lincoln ◽  
Elliot P. Douglas

ABSTRACTWe have investigated the effect of various processing variables on the magnetic field orientation of a liquid crystalline epoxy. By using a modified fractional factorial design, we created an empirical model which can be used to predict the degree of orientation as a function of these variables. The model predicts the correct qualitative trends, namely that orientation increases with increasing magnetic field strength, increases with increasing time in the field, and decreases with increasing B-staging. The model also reveals some surprising effects of B-staging on the degree of orientation.


2020 ◽  
Author(s):  
Nada Al-Haddad ◽  
Noé Lugaz

<p>The structure of coronal mass ejections (CMEs) has been the center of numerous studies over the past few decades. Defining the magnetic field orientation locally and globally has proven to be a challenging problem, due to the limited nature of observations that we have, as well as our reliance on the current paradigm of highly-twisted flux ropes. Studies suggest that not all CMEs measured <em>in situ </em>fit within the simple twisted and well-organized flux rope topology. Additionally, many of the events that can be well fitted by existing static flux rope models, do not have as simple a structure as that assumed by the models. This is clear from remote observations and multi-spacecraft measurements. With the wealth of data that we have today, as well as the affluence of research and analysis performed over the last 40 years, it is dues time to present an alternative paradigm, that better represents those data. In this work, we discuss this new paradigm and the literature leading to it. </p>


2017 ◽  
Vol 603 ◽  
pp. A64 ◽  
Author(s):  
J. D. Soler ◽  
P. A. R. Ade ◽  
F. E. Angilè ◽  
P. Ashton ◽  
S. J. Benton ◽  
...  

We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.́0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondencebetween (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or “ridges”, where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or “nests”, where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region.


Sign in / Sign up

Export Citation Format

Share Document