A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties

2001 ◽  
Vol 16 (2) ◽  
pp. 149-160 ◽  
Author(s):  
Orhun K. Muratoglu ◽  
Charles R. Bragdon ◽  
Daniel O. O'Connor ◽  
Murali Jasty ◽  
William H. Harris
2012 ◽  
Vol 733 ◽  
pp. 147-150 ◽  
Author(s):  
Yoshinori Kobayashi ◽  
Masato Yamawaki ◽  
Toshitaka Oka ◽  
Seiichi Saiki ◽  
Hamdy F.M. Mohamed ◽  
...  

Positron annihilation lifetime spectroscopy (PALS) has widely been used for probing open volume defects in various materials. PALS is in principle non-destructive, yet conventional PALS is not strictly non-destructive because cutting out of two specimens from the material is required. Recently we developed a novel method of PALS, which is potentially applicable to non-destructive, onsite material inspection. In order to explore the possibility of onsite monitoring of polymer degradation by this novel method of PALS, we studied variations of positron lifetime and mechanical properties of ultra high molecular weight polyethylene (UHMWPE) subjected to γ-irradiation. Correlations were found between the mechanical properties and ortho-positronium lifetimes, suggesting the feasibility of non-destructive, onsite monitoring of polymer degradation by PALS. The effect of γ-irradiation on positronium formation is discussed.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 404
Author(s):  
Nur Sharmila Sharip ◽  
Hidayah Ariffin ◽  
Tengku Arisyah Tengku Yasim-Anuar ◽  
Yoshito Andou ◽  
Yuki Shirosaki ◽  
...  

The major hurdle in melt-processing of ultra-high molecular weight polyethylene (UHMWPE) nanocomposite lies on the high melt viscosity of the UHMWPE, which may contribute to poor dispersion and distribution of the nanofiller. In this study, UHMWPE/cellulose nanofiber (UHMWPE/CNF) bionanocomposites were prepared by two different blending methods: (i) melt blending at 150 °C in a triple screw kneading extruder, and (ii) non-melt blending by ethanol mixing at room temperature. Results showed that melt-processing of UHMWPE without CNF (MB-UHMWPE/0) exhibited an increment in yield strength and Young’s modulus by 15% and 25%, respectively, compared to the Neat-UHMWPE. Tensile strength was however reduced by almost half. Ethanol mixed sample without CNF (EM-UHMWPE/0) on the other hand showed slight decrement in all mechanical properties tested. At 0.5% CNF inclusion, the mechanical properties of melt-blended bionanocomposites (MB-UHMWPE/0.5) were improved as compared to Neat-UHMWPE. It was also found that the yield strength, elongation at break, Young’s modulus, toughness and crystallinity of MB-UHMWPE/0.5 were higher by 28%, 61%, 47%, 45% and 11%, respectively, as compared to the ethanol mixing sample (EM-UHMWPE/0.5). Despite the reduction in tensile strength of MB-UHMWPE/0.5, the value i.e., 28.4 ± 1.0 MPa surpassed the minimum requirement of standard specification for fabricated UHMWPE in surgical implant application. Overall, melt-blending processing is more suitable for the preparation of UHMWPE/CNF bionanocomposites as exhibited by their characteristics presented herein. A better mechanical interlocking between UHMWPE and CNF at high temperature mixing with kneading was evident through FE-SEM observation, explains the higher mechanical properties of MB-UHMWPE/0.5 as compared to EM-UHMWPE/0.5.


2013 ◽  
Vol 341 ◽  
pp. 169-180 ◽  
Author(s):  
A.M. Abdul-Kader ◽  
Y.A. El-Gendy ◽  
Awad A. Al-Rashdi ◽  
A.M. Salem

The effect of ion beam bombardment on the optical and mechanical properties of ultra-high molecular weight polyethylene (UHMWPE) was investigated. UHMWPE polymer samples were bombarded with 150 keV N2ions under vacuum at room temperature to high fluences ranging from 1x1016to 2x1017ions cm-2. The untreated as well as treated samples were investigated by ultraviolet-visible (UV-Vis) spectrophotometer and Vickers micro-hardness techniques. The direct and indirect optical band gap decreased from 2.9 and 1.65 eV for pristine sample to 1.7 and 1 eV for those bombarded with N2ion beam at the highest fluence, respectively. With increasing ion fluence, an increase in the number of carbon atoms per conjugation length, N and number of carbon atoms per cluster, M in a formed cluster were observed. A significant improvement in surface hardness was obtained by increasing the ion fluence.


2010 ◽  
Vol 204 (23) ◽  
pp. 3887-3894 ◽  
Author(s):  
Laura Fasce ◽  
Josefina Cura ◽  
Mariela del Grosso ◽  
Gerardo García Bermúdez ◽  
Patricia Frontini

Sign in / Sign up

Export Citation Format

Share Document