Characterization of potential regulatory elements within the rat arginine vasopressin proximal promoter

Neuropeptides ◽  
1999 ◽  
Vol 33 (1) ◽  
pp. 81-90 ◽  
Author(s):  
C.O. Grace ◽  
G. Fink ◽  
J.P. Quinn
2021 ◽  
pp. 1-15
Author(s):  
Zengzhi Si ◽  
Yake Qiao ◽  
Kai Zhang ◽  
Zhixin Ji ◽  
Jinling Han

Sweetpotato, <i>Ipomoea batatas</i> (L.) Lam., is an important and widely grown crop, yet its production is affected severely by biotic and abiotic stresses. The nucleotide binding site (NBS)-encoding genes have been shown to improve stress tolerance in several plant species. However, the characterization of NBS-encoding genes in sweetpotato is not well-documented to date. In this study, a comprehensive analysis of NBS-encoding genes has been conducted on this species by using bioinformatics and molecular biology methods. A total of 315 NBS-encoding genes were identified, and 260 of them contained all essential conserved domains while 55 genes were truncated. Based on domain architectures, the 260 NBS-encoding genes were grouped into 6 distinct categories. Phylogenetic analysis grouped these genes into 3 classes: TIR, CC (I), and CC (II). Chromosome location analysis revealed that the distribution of NBS-encoding genes in chromosomes was uneven, with a number ranging from 1 to 34. Multiple stress-related regulatory elements were detected in the promoters, and the NBS-encoding genes’ expression profiles under biotic and abiotic stresses were obtained. According to the bioinformatics analysis, 9 genes were selected for RT-qPCR analysis. The results revealed that <i>IbNBS75</i>, <i>IbNBS219</i>, and <i>IbNBS256</i> respond to stem nematode infection; <i>Ib­NBS240</i>, <i>IbNBS90</i>, and <i>IbNBS80</i> respond to cold stress, while <i>IbNBS208</i>, <i>IbNBS71</i>, and <i>IbNBS159</i> respond to 30% PEG treatment. We hope these results will provide new insights into the evolution of NBS-encoding genes in the sweetpotato genome and contribute to the molecular breeding of sweetpotato in the future.


1997 ◽  
Vol 272 (6) ◽  
pp. 3444-3452 ◽  
Author(s):  
Allen D. Cooper ◽  
Jean Chen ◽  
Mary Jane Botelho-Yetkinler ◽  
Yicheng Cao ◽  
Takahiro Taniguchi ◽  
...  

Circulation ◽  
2012 ◽  
Vol 125 (suppl_10) ◽  
Author(s):  
Christy L Avery ◽  
Praveen Sethupathy ◽  
Steven Buyske ◽  
Q. C He ◽  
Dan Y Lin ◽  
...  

The QT interval (QT) is a heritable trait and its prolongation is an established risk factor for ventricular tachyarrhythmia and sudden cardiac death. Most genetic studies of QT have examined populations of European ancestry, although the increased genetic diversity in populations of African descent provides opportunity for fine-mapping, which can help narrow association signals and identify candidates for functional characterization. We examined whether eleven previously identified QT loci comprising 6,681 variants on the Illumina Metabochip array were associated with QT in 7,516 African American participants from the Atherosclerosis Risk in Communities study and Women’s Health Initiative clinical trial. Among associated loci, we used conditional analyses and queried bioinformatics databases to identify and functionally categorize signals. We identified nine of the eleven QT loci in African American populations ( P <0.0045 under an additive genetic model adjusting for ancestry and demographic characteristics: NOS1AP, ATP1B1, SCN5A, SLC35F1, KCNH2, KCNQ1, LITAF, NDRG4, and RFFL ). We also identified two independent secondary signals in NOS1AP and ATP1B1 ( P < 7.4x10 −6 ). Conditional analyses adjusting for published loci in European populations demonstrated that eight of these eleven SNPs (nine primary; two secondary) were independent of previously reported SNPs. We then performed the first bioinformatics-based functional characterization of QT loci using the eleven primary and secondary variants and SNPs in strong LD (r 2 > 0.5) among these African American participants. Only the SCN5A locus included a non-synonymous coding variant (rs1805124, H558R, r 2 = 0.7 with primary SNP rs9871385, P = 4.7x10 −4 ). The remaining ten loci harbored variants located exclusively within non-coding regions. Specifically, three contained SNPs within candidate long-range regulatory elements in human cardiomyocytes, five were in or near annotated promoter regions, and the remaining two were in un-annotated, but highly conserved non-coding elements. Several of the QT risk alleles at these SNPs significantly alter the predicted binding affinity for transcription factors, such as TBX5 and AhR, which have been previously implicated in cardiac formation and function. In summary, the findings provide compelling evidence that the same genes influence variation in QT across global populations and that additional, independent signals exist in African Americans. Moreover, of those SNPs identified as strong candidates for functional evaluation, the majority implicate gene regulatory dysfunction in QT prolongation.


2021 ◽  
Author(s):  
Sneha Gopalan ◽  
Yuqing Wang ◽  
Nicholas W. Harper ◽  
Manuel Garber ◽  
Thomas G Fazzio

Methods derived from CUT&RUN and CUT&Tag enable genome-wide mapping of the localization of proteins on chromatin from as few as one cell. These and other mapping approaches focus on one protein at a time, preventing direct measurements of co-localization of different chromatin proteins in the same cells and requiring prioritization of targets where samples are limiting. Here we describe multi-CUT&Tag, an adaptation of CUT&Tag that overcomes these hurdles by using antibody-specific barcodes to simultaneously map multiple proteins in the same cells. Highly specific multi-CUT&Tag maps of histone marks and RNA Polymerase II uncovered sites of co-localization in the same cells, active and repressed genes, and candidate cis-regulatory elements. Single-cell multi-CUT&Tag profiling facilitated identification of distinct cell types from a mixed population and characterization of cell type-specific chromatin architecture. In sum, multi-CUT&Tag increases the information content per cell of epigenomic maps, facilitating direct analysis of the interplay of different proteins on chromatin.


2019 ◽  
Author(s):  
Wei Fang ◽  
Yi Wen ◽  
Xiangyun Wei

AbstractTissue-specific or cell type-specific transcription of protein-coding genes is controlled by both trans-regulatory elements (TREs) and cis-regulatory elements (CREs). However, it is challenging to identify TREs and CREs, which are unknown for most genes. Here, we describe a protocol for identifying two types of transcription-activating CREs—core promoters and enhancers—of zebrafish photoreceptor type-specific genes. This protocol is composed of three phases: bioinformatic prediction, experimental validation, and characterization of the CREs. To better illustrate the principles and logic of this protocol, we exemplify it with the discovery of the core promoter and enhancer of the mpp5b apical polarity gene (also known as ponli), whose red, green, and blue (RGB) cone-specific transcription requires its enhancer, a member of the rainbow enhancer family. While exemplified with an RGB cone-specific gene, this protocol is general and can be used to identify the core promoters and enhancers of other protein-coding genes.


2018 ◽  
Author(s):  
Jürgen Jänes ◽  
Yan Dong ◽  
Michael Schoof ◽  
Jacques Serizay ◽  
Alex Appert ◽  
...  

AbstractAn essential step for understanding the transcriptional circuits that control development and physiology is the global identification and characterization of regulatory elements. Here we present the first map of regulatory elements across the development and ageing of an animal, identifying 42,245 elements accessible in at least one C. elegans stage. Based on nuclear transcription profiles, we define 15,714 protein-coding promoters and 19,231 putative enhancers, and find that both types of element can drive orientation-independent transcription. Additionally, hundreds of promoters produce transcripts antisense to protein coding genes, suggesting involvement in a widespread regulatory mechanism. We find that the accessibility of most elements is regulated during development and/or ageing and that patterns of accessibility change are linked to specific developmental or physiological processes. The map and characterization of regulatory elements across C. elegans life provides a platform for understanding how transcription controls development and ageing.


Sign in / Sign up

Export Citation Format

Share Document