Ergogenic Effects of Bihemispheric Transcranial Direct Current Stimulation on Fitness: a Randomized Cross-over Trial

2020 ◽  
Vol 42 (01) ◽  
pp. 66-73
Author(s):  
Roberto Codella ◽  
Rosario Alongi ◽  
Luca Filipas ◽  
Livio Luzi

AbstractSeveral types of routines and methods have been experimented to gain neuromuscular advantages, in terms of exercise performance, in athletes and fitness enthusiasts. The aim of the present study was to evaluate the impact of biemispheric transcranial direct current stimulation on physical fitness indicators of healthy, physically active, men. In a randomized, single-blinded, crossover fashion, seventeen subjects (age: 30.9 ± 6.5 years, BMI: 24.8±3.1 kg/m2) underwent either stimulation or sham, prior to: vertical jump, sit & reach, and endurance running tests. Mixed repeated measures anova revealed a large main effect of stimulation for any of the three physical fitness measures. Stimulation determined increases of lower limb power (+ 5%), sit & reach amplitude (+ 9%) and endurance running capacity (+ 12%) with respect to sham condition (0.16<ηp2 < 0.41; p<0.05). Ratings-of-perceived-exertion, recorded at the end of each test session, did not change across all performances. However, in the stimulated-endurance protocol, an average lower rate-of-perceived-exertion at iso-time was inferred. A portable transcranial direct current stimulation headset could be a valuable ergogenic resource for individuals seeking to improve physical fitness in daily life or in athletic training.

2021 ◽  
pp. 003151252110212
Author(s):  
Alexandre Moreira ◽  
Daniel Gomes da Silva Machado ◽  
Marom Bikson ◽  
Gozde Unal ◽  
Paul S. Bradley ◽  
...  

This study investigated the effect of transcranial direct current stimulation (tDCS) combined with a recovery training session on the well-being and self-perceived recovery of professional female soccer players after official matches. Data from 13 world-class players were analyzed after participating in four official soccer matches of the first division of the Brazilian Women’s Soccer Championship (7-, 10-, and 13-day intervals). We applied anodal tDCS (a-tDCS) over the left dorsolateral prefrontal cortex with 2 mA for 20 minutes (+F3/−F4 montage) the day after each match. Participants underwent two randomly ordered sessions of a-tDCS or sham. Players completed the Well-Being Questionnaire (WBQ) and the Total Quality Recovery (TQR) scale before each experimental condition and again the following morning. A two-way repeated-measures ANOVA showed a significant time x condition interaction on the WBQ (F(1,11)=5.21; p=0.043; ηp2=0.32), but not on the TQR (F(1,12) = 0.552; p = 0.47; ηp2 = 0.044). There was a large effect size (ES) for a-tDCS for the WBQ score (ES = 1.02; 95%CI = 0.17;1.88), and there was a moderate WBQ score increase (ES = 0.53; 95%CI = −0.29;1.34) for the sham condition. We found similar increases in the TQR score for a-tDCS (ES = 1.50; 95%CI = 0.63–2.37) and the sham condition (ES = 1.36; 95%CI = 0.51–2.22). These results suggest that a-tDCS (+F3/−F4 montage) combined with a recovery training session may slightly improve perceived well-being beyond the level of improvement after only the recovery training session among world-class female soccer players. Prior to widely adopting this recovery approach, further study is needed with larger and more diverse samples, including for female teams of different performance levels.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Suzanne Babyar ◽  
Taiza Santos-Pontelli ◽  
Tenysson Will-Lemos ◽  
Suleimy Mazin ◽  
Dylan Edwards ◽  
...  

Objective: To assess the effects of 2mA transcranial Direct Current Stimulation (tDCS) over the affected Parietal-Insular-Vestibular Cortex (PIVC) on seated posture of patients with lateropulsion following stroke. We hypothesized that bilateral electrode placement over PIVC (vs active control) would produce a change in seated posture. Background: Lateropulsion following stroke (Pusher Syndrome) is characterized by lateral displacement of subjective postural vertical toward the weak side. It is caused by lesions affecting vestibular projections to the Ventral Lateral Thalamus (VLT) or projections from the VLT to the Parietal-Insular-Vestibular Cortex (PIVC). Methods: Seventeen subjects with Burke Lateropulsion Scale scores ≥ 2 within 30 days of an ischemic stroke signed an IRB-approved consent. They received 2mA tDCS delivered using 25cm 2 saline soaked sponge electrodes via one of two montages: Test (anode over the affected PIVC and cathode opposite PIVC) versus Active Control (anode over the affected PIVC and cathode over the opposite supra-orbital region). PIVC was defined using EEG 10/20 coordinates. Seated medial-lateral center of pressure (COP-X) was measured using a custom-designed chair mounted on an AMTI™ analog-to-digital forceplate. An inclinometer strapped to the chest and aligned with the sternum measured lateral trunk tilt. Data were collected prior to, then at 5, 10, and 15 minutes during tDCS and 5 min following tDCS. Results: Repeated Measures Analysis of Variance rejected the hypothesis of an interaction between Montage and Time for: mean COP-X displacement (in) (Wilks’ λ F = 0.647 df =(4, 13), P = 0.639); mean speed of COP-X (in/s) (Wilks’ λ F = 0.740 df =(4, 13), P =0.581); mean inclinometer tilt (degrees) (Wilks’ λ F = 0.740 df =(4, 13), P =0.581). Conclusion: Neither tDCS montage showed improvement in COP-X displacement, COP-X movement velocity or inclinometer readings. These negative results are important to encourage the development of alternative tDCS stimulation parameters or identification of alternative cortical or vestibular tDCS targets for the treatment of Lateropulsion Following Stroke.


2018 ◽  
Author(s):  
Darias Holgado ◽  
Miguel A. Vadillo ◽  
Daniel Sanabria

Objective: To examine the effectss of transcranial direct current stimulation (tDCS) on objective and subjective indexes of exercise performance.Design: Systematic review and meta-analysis.Data Sources: A systematic literature search of electronic databases (PubMed, Web of Science, Scopus, Google Scholar) and reference lists of included articles up to June 2018.Eligibility Criteria: Published articles in journals or in repositories with raw data available, randomized sham-controlled trial comparing anodal stimulation with a sham condition providing data on objective (e.g. time to exhaustion or time-trial performance) or subjective (e.g. rate of perceived exertion) indexes of exercise performance.Results: The initial search provided 420 articles of which 31 were assessed for eligibility. Finally, the analysis of effect sizes comprised 24 studies with 386 participants. The analysis indicated that anodal tDCS had a small but positive effect on performance g = 0.34, 95% CI [0.12, 0.52], z = 3.24, p = 0.0012. Effects were not significantly moderated by type of outcome, electrode placement, muscles involved, number of sessions, or intensity and duration of the stimulation. Importantly, the funnel plot showed that, overall, effect sizes tended to be larger in studies with lower sample size and high standard error. Summary: The results suggest that tDCS may have a positive impact on exercise performance. However, the effect is probably small and most likely biased by low quality studies and the selective publication of significant results. Therefore, the current evidence does not provide strong support to the conclusion that tDCS is an effective means to improve exercise performance.


2019 ◽  
Vol 33 (5) ◽  
pp. 1237-1243 ◽  
Author(s):  
Eduardo Lattari ◽  
Lucas A. F. Vieira ◽  
Bruno R. R. Oliveira ◽  
Gözde Unal ◽  
Marom Bikson ◽  
...  

2017 ◽  
Vol 38 (07) ◽  
pp. 493-500 ◽  
Author(s):  
Alexandre Okano ◽  
Daniel Machado ◽  
Leônidas Oliveira Neto ◽  
Luiz Farias-Junior ◽  
Pedro Agrícola ◽  
...  

AbstractThis study evaluated whether transcranial direct current stimulation (tDCS) could change physiological and psychological responses during vigorous exercise with a constant load. 13 sedentary males (23.0±4.2 years; 25.6±4.2 kg/m²) took part in this randomized, crossed-over, sham-controlled, and double-blinded study. Participants underwent 2 sessions with anodal or sham tDCS (2 mA, 20 min) applied before exercise over the left temporal cortex targeting the left insular cortex. The exercise was performed at vigorous intensity (%HRmax 81.68±6.37) for 30 min. Heart rate (HR), rating of perceived exertion (RPE) and affective responses (pleasure/displeasure) were recorded at every 5 min. Additionally, heart rate variability (HRV) was measured before, immediately after and 60 min after the end of exercise. A 2-way repeated measure ANOVA showed that tDCS improved HRV neither at rest nor after exercise (p>0.15). Similarly, HR, RPE, and affective responses were not enhanced by tDCS during vigorous exercise (p>0.23). The findings of this study suggest that tCDS does not modulate either HRV at rest nor HR, RPE and affective responses during exercise. Transcranial direct current stimulation’s efficiency might depend on the participants’ levels of physical fitness and parameters of stimulation (e. g., duration, intensity, and arrangement of electrodes).


2018 ◽  
Vol 29 (4) ◽  
pp. 463-473 ◽  
Author(s):  
Mana Biabani ◽  
Michael Farrell ◽  
Maryam Zoghi ◽  
Gary Egan ◽  
Shapour Jaberzadeh

Abstract Crossover designs are used by a high proportion of studies investigating the effects of transcranial direct current stimulation (tDCS) on motor learning. These designs necessitate attention to aspects of data collection and analysis to take account of design-related confounds including order, carryover, and period effects. In this systematic review, we appraised the method sections of crossover-designed tDCS studies of motor learning and discussed the strategies adopted to address these factors. A systematic search of 10 databases was performed and 19 research papers, including 21 experimental studies, were identified. Potential risks of bias were addressed in all of the studies, however, not in a rigorous and structured manner. In the data collection phase, unclear methods of randomization, various lengths of washout period, and inconsistency in the counteracting period effect can be observed. In the analytical procedures, the stratification by sequence group was often ignored, and data were treated as if it belongs to a simple repeated-measures design. An inappropriate use of crossover design can seriously affect the findings and therefore the conclusions drawn from tDCS studies on motor learning. The results indicate a pressing need for the development of detailed guidelines for this type of studies to benefit from the advantages of a crossover design.


2020 ◽  
Vol 15 (7) ◽  
pp. 958-963
Author(s):  
Paulo H.C. Mesquita ◽  
Emerson Franchini ◽  
Marco A. Romano-Silva ◽  
Guilherme M. Lage ◽  
Maicon R. Albuquerque

Purpose: To investigate the effects of anodal transcranial direct current stimulation (a-tDCS) on the aerobic performance, heart rate (HR), and rating of perceived exertion (RPE) of highly trained taekwondo athletes. Methods: Twelve (8 men and 4 women) international/national-level athletes received a-tDCS or sham treatment over the M1 location in a randomized, single-blind crossover design. The stimulation was delivered at 1.5 mA for 15 min using an extracephalic bihemispheric montage. Athletes performed the progressive-specific taekwondo test 10 min after stimulation. HR was monitored continuously during the test, and RPE was registered at the end of each stage and at test cessation. Results: There were no significant differences between sham and a-tDCS in time to exhaustion (14.6 and 14.9, respectively, P = .53, effect size = 0.15) and peak kicking frequency (52 and 53.6, respectively, P = .53, effect size = 0.15) or in HR (P > .05) and RPE responses (P > .05). Conclusions: Extracephalic bihemispheric a-tDCS over M1 did not influence the aerobic performance of taekwondo athletes or their psychophysiological responses, so athletes and staff should be cautious when using it in a direct-to-consumer manner.


Sign in / Sign up

Export Citation Format

Share Document