Optimization and Evaluation of Self-nanoemulsifying Drug Delivery System for Enhanced Bioavailability of Plumbagin

Planta Medica ◽  
2021 ◽  
Author(s):  
Pavan Ram Kamble ◽  
Karimunnisa Sameer Shaikh

AbstractPlumbagin, a potential bioactive lipophilic molecule, possesses limited solubility and low oral bioavailability. The purpose of the present study was to examine the potential of the self-nanoemulsifying drug delivery system for improving solubility and oral bioavailability of plumbagin. The self-nanoemulsifying drug delivery system was formulated from Capmul MCM (oil), Tween 20 (surfactant), and propylene glycol (cosurfactant). Central composite design was employed as statistical tool to optimize the formulation variables, X1 (oil) and X2 (surfactant: co-surfactant mixture ratio), of the self-nanoemulsifying drug delivery system. The responses studied were droplet size, self-emulsification time, % of drug release in 15 min, and equilibrium solubility. The optimized liquid self-nanoemulsifying drug delivery system was adsorbed on Neusilin US2 and characterized for flow properties, X-ray diffractometry, differential scanning calorimetry, in vitro dissolution, in vivo anti-inflammatory activity, and bioavailability study in Wistar rats, as well as ex vivo permeation study. The droplet size, polydispersity index, self-emulsification time, and equilibrium solubility of the optimized formulation were 58.500 ± 1.170 nm, 0.228 ± 0.012, 17.660 ± 1.520 s, and 34.180 ± 1.380 mg/mL, respectively. Its zeta potential, transmittance value, and cloud point were − 28.200 ± 1.200 mV, 99.200% ± 0.600, and 90 °C, respectively. Drug release was found to be 93.320% ± 1.090. In vivo anti-inflammatory study confirmed more enhanced activity from the self-nanoemulsifying drug delivery system than with pure plumbagin. Pharmacokinetic study in rats revealed that solid self-nanoemulsifying drug delivery system had 4.49-fold higher bioavailability than pure plumbagin. Ex vivo permeation study demonstrated 1.75-fold increased intestinal permeability of the self-nanoemulsifying drug delivery system than pure plumbagin. The developed self-nanoemulsifying drug delivery system is a useful solid platform for improving solubility and oral bioavailability of plumbagin.

Planta Medica ◽  
2020 ◽  
Author(s):  
Patcharawalai Jaisamut ◽  
Subhaphorn Wanna ◽  
Surasak Limsuwan ◽  
Sasitorn Chusri ◽  
Kamonthip Wiwattanawongsa ◽  
...  

AbstractBoth quercetin and resveratrol are promising plant-derived compounds with various well-described biological activities; however, they are categorized as having low aqueous solubility and labile natural compounds. The purpose of the present study was to propose a drug delivery system to enhance the oral bioavailability of combined quercetin and resveratrol. The suitable self-microemulsifying formulation containing quercetin together with resveratrol comprised 100 mg Capryol 90, 700 mg Cremophor EL, 200 mg Labrasol, 20 mg quercetin, and 20 mg resveratrol, which gave a particle size of 16.91 ± 0.08 nm and was stable under both intermediate and accelerated storage conditions for 12 months. The percentages of release for quercetin and resveratrol in the self-microemulsifying formulation were 75.88 ± 1.44 and 86.32 ± 2.32%, respectively, at 30 min. In rats, an in vivo pharmacokinetics study revealed that the area under the curve of the self-microemulsifying formulation containing quercetin and resveratrol increased approximately ninefold for quercetin and threefold for resveratrol compared with the unformulated compounds. Moreover, the self-microemulsifying formulation containing quercetin and resveratrol slightly enhanced the in vitro antioxidant and cytotoxic effects on AGS, Caco-2, and HT-29 cells. These findings demonstrate that the self-microemulsifying formulation containing quercetin and resveratrol could successfully enhance the oral bioavailability of the combination of quercetin and resveratrol without interfering with their biological activities. These results provide valuable information for more in-depth research into the utilization of combined quercetin and resveratrol.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2920
Author(s):  
Ameeduzzafar Zafar ◽  
Syed Sarim Imam ◽  
Nabil K. Alruwaili ◽  
Omar Awad Alsaidan ◽  
Mohammed H. Elkomy ◽  
...  

Hypertension is a cardiovascular disease that needs long-term medication. Oral delivery is the most common route for the administration of drugs. The present research is to develop piperine self-nanoemulsifying drug delivery system (PE-SNEDDS) using glyceryl monolinoleate (GML), poloxamer 188, and transcutol HP as oil, surfactant, and co-surfactant, respectively. The formulation was optimized by three-factor, three-level Box-Behnken design. PE-SNEDDs were characterized for globule size, emulsification time, stability, in-vitro release, and ex-vivo intestinal permeation study. The optimized PE-SNEDDS (OF3) showed the globule size of 70.34 ± 3.27 nm, percentage transmittance of 99.02 ± 2.02%, and emulsification time of 53 ± 2 s Finally, the formulation OF3 was transformed into solid PE-SNEDDS (S-PE-SNEDDS) using avicel PH-101 as adsorbent. The reconstituted SOF3 showed a globule size of 73.56 ± 3.54 nm, PDI of 0.35 ± 0.03, and zeta potential of −28.12 ± 2.54 mV. SEM image exhibited the PE-SNEDDS completely adsorbed on avicel. Thermal analysis showed the drug was solubilized in oil, surfactant, and co-surfactant. S-PE-SNEDDS formulation showed a more significant (p < 0.05) release (97.87 ± 4.89% in 1 h) than pure PE (27.87 ± 2.65% in 1 h). It also exhibited better antimicrobial activity against S. aureus and P. aeruginosa and antioxidant activity as compared to PE dispersion. The in vivo activity in rats exhibited better (p < 0.05) antihypertensive activity as well as 4.92-fold higher relative bioavailability than pure PE dispersion. Finally, from the results it can be concluded that S-PE-SNEDDS might be a better approach for the oral delivery to improve the absorption and therapeutic activity.


Author(s):  
SACHIN SAGGAR ◽  
ASHUTOSH UPADHAYAY ◽  
MANISH GOSWAMI

Objective: The self-micro-emulsifying drug delivery system (SMEDDS) of bambuterol hydrochloride was designed, prepared, and evaluated to overcome the problem of poor bioavailability. Methods: The designing of the formulation included the selection of oil phase, surfactant, and cosolvent/cosurfactant based on the saturated solubility studies. Psuedoternary phase diagram was constructed using aqueous titration method, to identify the self-emulsifying region. Different ratios of the selected surfactant and cosolvent/cosurfactant (Smix) were also studied and used to construct the ternary phase diagram. The prepared formulations of the SMEDDS were evaluated for drug content, morphology, globule size, robustness to dilution, emulsification time, optical clarity, and stability. Results: The formulation containing 10 mg bambuterol hydrochloride, triacetin (12.50% w/w), Tween 80 (43.75% w/w), and ethanol (43.75% w/w) was concluded to be optimized. The optimized SMEDDS not only showed optimum globule size, zeta potential, and drug content but was also found to be robust to dilution, formed emulsion spontaneously, and was stable. The optimized SMEDDS showed increased permeability of the drug across the intestinal membrane in ex vivo studies. Conclusion: The results suggest that bambuterol hydrochloride can be formulated as self-microemulsifying drug delivery system, and further, SMEDDS can be used to improve the oral bioavailability of bambuterol hydrochloride.


Sign in / Sign up

Export Citation Format

Share Document