Role of structural plasticity in the human brain for multisensory compensation following unilateral peripheral vestibular lesion

2009 ◽  
Vol 40 (01) ◽  
Author(s):  
J Klinkenstein ◽  
T Sander ◽  
J Gliemroth ◽  
C Mohr ◽  
S Gottschalk ◽  
...  
2008 ◽  
Vol 35 (S 01) ◽  
Author(s):  
C Helmchen ◽  
J Klinkenstein ◽  
T Sander ◽  
J Gliemroth ◽  
B Machner ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 960
Author(s):  
Mina Kheirkhah ◽  
Philipp Baumbach ◽  
Lutz Leistritz ◽  
Otto W. Witte ◽  
Martin Walter ◽  
...  

Studies investigating human brain response to emotional stimuli—particularly high-arousing versus neutral stimuli—have obtained inconsistent results. The present study was the first to combine magnetoencephalography (MEG) with the bootstrapping method to examine the whole brain and identify the cortical regions involved in this differential response. Seventeen healthy participants (11 females, aged 19 to 33 years; mean age, 26.9 years) were presented with high-arousing emotional (pleasant and unpleasant) and neutral pictures, and their brain responses were measured using MEG. When random resampling bootstrapping was performed for each participant, the greatest differences between high-arousing emotional and neutral stimuli during M300 (270–320 ms) were found to occur in the right temporo-parietal region. This finding was observed in response to both pleasant and unpleasant stimuli. The results, which may be more robust than previous studies because of bootstrapping and examination of the whole brain, reinforce the essential role of the right hemisphere in emotion processing.


Much has been said at the symposium about the pre-eminent role of the brain in the continuing emergence of man. Tobias has spoken of its explosive enlargement during the last 1 Ma, and how much of its enlargement in individual ontogeny is postnatal. We are born before our brains are fully grown and ‘wired up ’. During our long adolescence we build up internal models of the outside world and of the relations of parts of our bodies to it and to one another. Neurons that are present at birth spread their dendrites and project axons which acquire their myelin sheaths, and establish innumerable contacts with other neurons, over the years. New connections are formed; genetically endowed ones are stamped in or blanked off. People born without arms may grow up to use their toes in skills that are normally manual. Tobias, Darlington and others have stressed the enormous survival value of adaptive behaviour and the ‘positive feedback’ relation between biological and cultural evolution. The latter, the unique product of the unprecedentedly rapid biological evolution of big brains, advances on a time scale unknown to biological evolution.


2019 ◽  
Vol 484 (2) ◽  
pp. 238-242
Author(s):  
N. A. Semenova ◽  
P. E. Menshchikov ◽  
A. V. Manzhurtsev ◽  
M. V. Ublinskiy ◽  
T. A. Akhadov ◽  
...  

Intracellular concentrations of N acetyaspartate (NAA), aspartate (Asp) and glutamate (Glu) were determined for the first time in human brain in vivo, and the effect of severe traumatic brain injury on NAA synthesis in acute and late post-traumatic period was investigated. In MRI‑negative frontal lobes one day after injury Asp and Glu levels were found to decrease by 45 and 35%, respectively, while NAA level decreased by only 16%. A negative correlation between NAA concentration and the ratio of Asp/Glu concentrations was found. In the long-term period, Glu level returned to normal, Asp level remained below normal by 60%, NAA level was reduced by 65% relative to normal, and Asp/Glu ratio significantly decreased. The obtained results revealed leading role of the neuronal aspartate-malate shuttle in violation of NAA synthesis.


Epigenomics ◽  
2016 ◽  
Vol 8 (12) ◽  
pp. 1583-1599 ◽  
Author(s):  
Claudia Knothe ◽  
Bruno G Oertel ◽  
Alfred Ultsch ◽  
Mattias Kettner ◽  
Peter Harald Schmidt ◽  
...  

Open Medicine ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Zlatislav Stoyanov ◽  
Lyoubka Decheva ◽  
Irina Pashalieva ◽  
Piareta Nikolova

AbstractThe principle of symmetry-asymmetry is widely presented in the structural and functional organization of the nonliving and living nature. One of the most complex manifestations of this principle is the left-right asymmetry of the human brain. The present review summarizes previous and contemporary literary data regarding the role of brain asymmetry in neuroimmunomodulation. Some handedness-related peculiarities are outlined additionally. Brain asymmetry is considered to be imprinted in the formation and regulation of the individual’s responses and relationships at an immunological level with the external and internal environment. The assumptions that the hemispheres modulate immune response in an asymmetric manner have been confirmed in experiments on animals. Some authors assume that the right hemisphere plays an indirect role in neuroimmunomodulation, controlling and suppressing the left hemispheric inductive signals.


Author(s):  
Toshihisa Ishikawa ◽  
Yoshinaga Kajimoto ◽  
Yutaka Inoue ◽  
Yoji Ikegami ◽  
Toshihiko Kuroiwa

Sign in / Sign up

Export Citation Format

Share Document