Microbial control agent containing a Sri Lankan Bacillus thuringiensis isolate for control of Lepidopteran pests

Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
R Samarasekera ◽  
DA Siriwardhana ◽  
L HerathI ◽  
D Ahangama
2009 ◽  
Vol 75 (14) ◽  
pp. 4661-4667 ◽  
Author(s):  
Alejandro Hernández-Soto ◽  
M. Cristina Del Rincón-Castro ◽  
Ana M. Espinoza ◽  
Jorge E. Ibarra

ABSTRACT Bacillus thuringiensis subsp. israelensis is the most widely used microbial control agent against mosquitoes and blackflies. Its insecticidal success is based on an arsenal of toxins, such as Cry4A, Cry4B, Cry11A, and Cyt1A, harbored in the parasporal crystal of the bacterium. A fifth toxin, Cry10Aa, is synthesized at very low levels; previous attempts to clone and express Cry10Aa were limited, and no parasporal body was formed. By using a new strategy, the whole Cry10A operon was cloned in the pSTAB vector, where both open reading frames ORF1 and ORF2 (and the gap between the two) were located, under the control of the cyt1A operon and the STAB-SD stabilizer sequence characteristic of this vector. Once the acrystalliferous mutant 4Q7 of B. thuringiensis subsp. israelensis was transformed with this construct, parasporal bodies were observed by phase-contrast microscopy and transmission electron microscopy. Discrete, ca. 0.9-μm amorphous parasporal bodies were observed in the mature sporangia, which were readily purified by gradient centrifugation once autolysis had occurred. Pure parasporal bodies showed two major bands of ca. 68 and 56 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. These bands were further characterized by N-terminal sequencing of tryptic fragments using matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis, which identified both bands as the products of ORF1 and ORF2, respectively. Bioassays against fourth-instar larvae of Aedes aegypti of spore-crystal complex and pure crystals of Cry10Aa gave estimated 50% lethal concentrations of 2,061 ng/ml and 239 ng/ml, respectively. Additionally, synergism was clearly detected between Cry10A and Cyt1A, as the synergistic levels (potentiation rates) were estimated at 13.3 for the mixture of Cyt1A crystals and Cry10Aa spore-crystal complex and 12.6 for the combination of Cyt1A and Cry10Aa pure crystals.


1997 ◽  
Vol 129 (S171) ◽  
pp. 147-156 ◽  
Author(s):  
B. Zelazny ◽  
M.S. Goettel ◽  
B. Keller

AbstractBacteria have been implicated in disease epizootics observed in field populations and laboratory-reared locusts and grasshoppers. Two species [Serratia marcescens Bizio and Pseudomonas aeruginosa (Schroeter) Migula] consistently infect locusts when ingested with food and can spread in laboratory populations. However, research on developing these organisms for microbial control of locusts and grasshoppers begun in the 1950s has not been continued. In recent years strains of Bacillus thuringiensis Berliner have been studied for activity against locusts and grasshoppers. Results of additional trials by the authors are reported. Among 393 B. thuringiensis isolates and 93 preparations of other sporeforming bacteria fed to nymphs of Locusta migratoria (L.) and/or Schistocerca gregaria Forsk., none has shown any pathogenicity to the insects. The recent discovery of novel B. thuringiensis strains active against various diverse pests and the many properties of a sporeforming bacterium that satisfy the requirements for a microbial control agent, and the development of Serratia entomophila as a promising agent for control of grass grubs, provide incentive to continue the search for an orthopteran-active sporeforming bacterium and to re-investigate the potential of non-sporeforming bacterial pathogens as microbial control agents of grasshoppers and locusts.


1992 ◽  
Vol 124 (4) ◽  
pp. 587-616 ◽  
Author(s):  
Clayton C. Beegle ◽  
Takashi Yamamoto

AbstractThis review article starts with the discovery of Bacillus thuringiensis Berliner in Japan at the turn of the century and notes that the observations of the early Japanese workers clearly show that they were aware of the toxin-mediated nature of the activity of B. thuringiensis toward insect larvae. The early work in Europe with B. thuringiensis against Ostrinia nubilalis (Hubner) showed that the bacterium had promise as a microbial control agent. The commercial development of B. thuringiensis in France in the late 1930s, and in Eastern Europe and the United States in the 1950s, is traced.


2015 ◽  
Vol 3 (6) ◽  
Author(s):  
Janaina Zorzetti ◽  
Ana P. S. Ricietto ◽  
Carlos R. M. da Silva ◽  
Ivan R. Wolf ◽  
Gislayne T. Vilas-Bôas ◽  
...  

Bacillus thuringiensis is an important microbial control agent against insect pests. The draft genome sequence of the Brazilian strain BR58 described here contains the insecticidal genes cry4A , cry4B , cry10A , cry11A , cry60A , cry60B , and cyt1A , which show toxicity to both Aedes aegypti and Hypothenemus hampei larvae.


Sign in / Sign up

Export Citation Format

Share Document