Antiproliferative effects of Zanthoxilum rhoifolium

Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
AD Weber ◽  
CZ Stüker ◽  
G Zannon ◽  
V Ilha ◽  
II Dalcol ◽  
...  
Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381 ◽  
Author(s):  
H Niksic ◽  
E Kovac-Besovic ◽  
M Sober ◽  
N Mulabegovic ◽  
M Kralj ◽  
...  

1995 ◽  
Vol 73 (03) ◽  
pp. 535-542 ◽  
Author(s):  
N Crawford ◽  
A Chajara ◽  
G Pfliegler ◽  
B EI Gamal ◽  
L Brewer ◽  
...  

SummaryDrugs can be electro-encapsulated within platelets and targeted to damaged blood vessels by exploiting the platelet’s natural haemostatic properties to adhere to collagen and other vessel wall constituents revealed by injury. A rat aorta balloon angioplasty model has been used to study the effect on platelet deposition of giving iloprost loaded platelets i.v. during the balloon injury. After labelling the circulating platelets with 111-Indium before balloon injury, time course studies showed maximum platelet deposition on the injured aorta occurred at about 1 h post-injury and the deposition remained stable over the next 2-3 h. When iloprost-loaded platelets were given i.v. during injury and the circulating platelet pool labelled with 111-Indium 30 min later, platelet deposition, measured at 2 h postinjury, was substantially and significantly reduced compared with control platelet treatment. Some antiproliferative effects of iloprost-loaded platelets given i.v. during injury have also been observed. Whereas the incorporation of [3H]-thymidine into aorta intima-media DNA at 3 days post injury was 62-fold higher in balloon injured rats than in control sham operated rats, thymidine incorporation into intima/media of rats which had received iloprost loaded platelets during injury was reduced as compared with rats subjected only to the injury procedure. The reduction was only of near significance, however, but at 14 days after injury the total DNA content of the aorta intima/media of rats given iloprost loaded platelets during injury was significantly reduced. Although iloprost loaded platelets can clearly inhibit excessive platelet deposition, other encapsulated agents may have greater anti-proliferative effects. These studies have shown that drug loaded platelets can be targeted to injured arteries, where they may be retained as depots for local release. We believe this novel drug delivery protocol may have therapeutic potential in reducing the incidence of occlusion and restenosis after angioplasty and thrombolysis treatment. Electro-encapsulation of drugs into platelets is a simple procedure and, using autologous and fully biocompatible and biodegradable platelets as delivery vehicles, might overcome some of the immunological and toxicological problems which have been encountered with other delivery vectors such as liposomes, microbeads, synthetic microcapsules and antibodies.


2013 ◽  
Vol 19 (15) ◽  
pp. 2728-2736 ◽  
Author(s):  
Luca Vanella ◽  
Ignazio Barbagallo ◽  
Rosaria Acquaviva ◽  
Claudia Di Giacomo ◽  
Venera Cardile ◽  
...  

Author(s):  
Paola Castillo-Juárez ◽  
Sebastián C. Sanchez ◽  
Alma D. Chávez-Blanco ◽  
Humberto Mendoza-Figueroa ◽  
José Correa-Basurto

Background and Objective: Histone deacetylases (HDACs) are important therapeutic targets for many types of human cancers. A derivative of valproic acid, N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA), has antiproliferative properties on some cancer cell lines and inhibits the HDAC1 isoform. Materials and Methods: In this work, HO-AAVPA was tested as an antiproliferative agent in U87-MG (human glioblastoma) and U-2 OS cells (human osteosarcoma), which are types of cancer that are difficult to treat, and its antiangiogenic properties were explored. Results: HO-AAVPA had antiproliferative effects at 48 h with an IC50 = 0.655 mM in U87-MG cells and an IC50 = 0.453 mM in U-2 OS cells. Additionally, in the colony formation assay, HO-AAVPA decreased the number of colonies by approximately 99% in both cell lines and induced apoptosis by 31.3% in the U-2 OS cell line and by 78.2% in the U87-MG cell line. Additionally, HO-AAVPA reduced the number of vessels in chorioallantoid membranes (CAMs) by approximately 67.74% and IL-6 levels in both cell lines suggesting that the biochemical mechanism on cancer cell of HO-AAVPA is different compared to VPA. Conclusion: HO-AAVPA has antiproliferative effects on glioblastoma and osteosarcoma and antiangiogenic properties.


2011 ◽  
Vol 5 (3) ◽  
pp. 168-176
Author(s):  
Pompilio Elio Torremante ◽  
Harald Rosner

2020 ◽  
Vol 6 (2) ◽  
pp. 134-146 ◽  
Author(s):  
Kehkashan Arshad Qamar ◽  
Ahsana Dar Farooq ◽  
Bina S. Siddiqui ◽  
Nurul Kabir ◽  
Sabira Begum

Aims: The aim of the current study was to identify active compound(s) responsible for the antiproliferative effects of O. basilicum and explore their underlying mechanism/s. Background: Plants have been the source of medicines for the treatment of various diseases since ancient times. Ocimum basilicum (Sweet Basil, Bobai Tulsi) has been used in the folk medicine for the treatment of human liver, spleen and stomach cancers. Background: Plants have been the source of medicines for the treatment of various diseases since ancient times. Ocimum basilicum (Sweet Basil, Bobai Tulsi) has been used in the folk medicine for the treatment of human liver, spleen and stomach cancers. Objective: To emphasize the importance of O. basilicum as a potential novel non-toxic alternative to the conventional anticancer therapy. Method: O. basilicum (aerial parts) methanolic extract and fractions were screened against HT-144, MCF-7, NCI-H460 and SF-268 human cancer cell lines using sulforhodamine B assay. The more active Petroleum Ether Insoluble (PEI) fraction was fractionated into six sub-fractions (OB-1 to OB-6). Four pure compounds (3-O-methyl ursolic acid, oleanolic acid, 3-epi-ursolic acid and ursolic acid) were isolated from the more potent sub-fraction OB- 6. Triple channel immunofluorescence microscopy was employed to observe the effects of methanolic extract, PEI fraction, sub-fractions OB-5 and OB-6, 3-epi-ursolic acid and oleanolic acid on the cytoskeleton and nuclei of MCF-7 cells. Result: The methanolic extract and the PEI fraction exhibited selectively greater growth inhibition against MCF-7 cell line (TGI: 56 and 36.2 µg/ml, respectively). By using triple channel immunofluorescence microscopy, it was observed that the methanolic extract, PEI fraction, sub-fraction OB-5 and 3-epi-ursolic acid induced irregular mitotic spindle formation and slowing of mitotic progression in MCF-7 cells while sub-fraction OB-6 induced mitotic arrest in the prophase stage. F-actin aggregation was also visible in PEI fraction, subfraction OB-5 and 3-epi-ursolic acid treated MCF-7 cells. Conclusion: These results emphasize the importance of O. basilicum as a potential novel non-toxic alternative to the conventional anticancer therapy and suggest that it inhibits the growth of MCF-7 cancer cells via multiple mechanisms such as interaction with the microtubules and mitotic spindle apparatus, and F-actin aggregation.


Sign in / Sign up

Export Citation Format

Share Document