Dimethylarginine dimethylaminohydrolase-1 transgenic mice are not protected from ischaemic stroke due to a ceiling effect of enzymatic activity in brain

2009 ◽  
Vol 36 (S 02) ◽  
Author(s):  
F Leypoldt ◽  
M Gelderblom ◽  
CU Choe ◽  
EC von Leitner ◽  
D Atzler ◽  
...  
2014 ◽  
Vol 05 (20) ◽  
pp. 1239-1247
Author(s):  
Tyler Downing ◽  
Amy Mangla ◽  
Michael Banta ◽  
Suguru Nakamura

PLoS ONE ◽  
2009 ◽  
Vol 4 (10) ◽  
pp. e7337 ◽  
Author(s):  
Frank Leypoldt ◽  
Chi-Un Choe ◽  
Mathias Gelderblom ◽  
Eike-Christin von Leitner ◽  
Dorothee Atzler ◽  
...  

2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Roman N Rodionov ◽  
Silke Brilloff ◽  
Natalia Jarzebska ◽  
Anne Kolouschek ◽  
Jens Martens-Lobenhoffer ◽  
...  

Background: ADMA (asymmetric dimethylarginine) is an endogenous inhibitor of nitric oxide synthase. ADMA can be metabolized to citrulline by dimethylarginine dimethylaminohydrolase (DDAH). DDAH1 overexpression lowers ADMA and protects from angiotensin II - induced renal interstitial fibrosis and vascular oxidative stress. The goal of the current study was to test the hypothesis that transgenic overexpression of DDAH1 protects from angiotensin II-induced cardiac hypertrophy. Methods and Results: DDAH1 transgenic mice grew and developed normally and had decreased plasma ADMA levels. Angiotensin II was infused for four weeks in the dose of 0.75 mg/kg/day in DDAH1 transgenic mice and wild type littermates via osmotic minipumps. Echocardiography was performed in the first and fourth week after start of the infusion on anaesthetized mice. After 4 weeks of angiotensin II infusion wild type mice developed cardiac hypertrophy. The DDAH1 transgenic mice had higher left ventricular lumen to wall ratio compared to the wild type mice (1.76 ± 0.18 vs 1.15 ± 0.22, P<0.01). They also had lower left ventricular posterior wall thickness in systole and diastole as compared to the wild type controls (1.18 ± 0.03 mm vs 1.95 ± 0.16 mm, P<0.001 and 0.81 ± 0.03 mm vs 1.62 ± 0.25 mm, P<0.001, respectively). Conclusion: We demonstrated that upregulation of DDAH1 protects from angiotensin II-induced cardiac hypertrophy. Our findings suggest that ADMA plays a role in angiotensin II - induced myocardial remodeling. Upregulation of DDAH1 might be a potential approach for protection from angiotensin II - induced end organ damage.


Author(s):  
C. G. Plopper ◽  
C. Helton ◽  
A. J. Weir ◽  
J. A. Whitsett ◽  
T. R. Korfhagen

A wide variety of growth factors are thought to be involved in the regulation of pre- and postnatal lung maturation, including factors which bind to the epidermal growth factor receptor. Marked pulmonary fibrosis and enlarged alveolar air spaces have been observed in lungs of transgenic mice expressing human TGF-α under control of the 3.7 KB human SP-C promoter. To test whether TGF-α alters lung morphogenesis and cellular differentiation, we examined morphometrically the lungs of adult (6-10 months) mice derived from line 28, which expresses the highest level of human TGF-α transcripts among transgenic lines. Total volume of lungs (LV) fixed by airway infusion at standard pressure was similar in transgenics and aged-matched non-transgenic mice (Fig. 1). Intrapulmonary bronchi and bronchioles made up a smaller percentage of LV in transgenics than in non-transgenics (Fig. 2). Pulmonary arteries and pulmonary veins were a smaller percentage of LV in transgenic mice than in non-transgenics (Fig. 3). Lung parenchyma (lung tissue free of large vessels and conducting airways) occupied a larger percentage of LV in transgenics than in non-transgenics (Fig. 4). The number of generations of branching in conducting airways was significantly reduced in transgenics as compared to non-transgenic mice. Alveolar air space size, as measured by mean linear intercept, was almost twice as large in transgenic mice as in non-transgenics, especially when different zones within the lung were compared (Fig. 5). Alveolar air space occupied a larger percentage of the lung parenchyma in transgenic mice than in non-transgenic mice (Fig. 6). Collagen abundance was estimated in histological sections as picro-Sirius red positive material by previously-published methods. In intrapulmonary conducting airways, collagen was 4.8% of the wall in transgenics and 4.5% of the wall in non-transgenic mice. Since airways represented a smaller percentage of the lung in transgenics, the volume of interstitial collagen associated with airway wall was significantly less. In intrapulmonary blood vessels, collagen was 8.9% of the wall in transgenics and 0.7% of the wall in non-transgenics. Since blood vessels were a smaller percentage of the lungs in transgenics, the volume of collagen associated with the walls of blood vessels was five times greater. In the lung parenchyma, collagen was 51.5% of the tissue volume in transgenics and 21.2% in non-transgenics. Since parenchyma was a larger percentage of lung volume in transgenics, but the parenchymal tissue was a smaller percent of the volume, the volume of collagen associated with parenchymal tissue was only slightly greater. We conclude that overexpression of TGF-α during lung maturation alters many aspects of lung development, including branching morphogenesis of the airways and vessels and alveolarization in the parenchyma. Further, the increases in visible collagen previously associated with pulmonary fibrosis due to the overexpression of TGF-α are a result of actual increases in amounts of collagen and in a redistribution of collagen within compartments which results from morphogenetic changes. These morphogenetic changes vary by lung compartment. Supported by HL20748, ES06700 and the Cystic Fibrosis Foundation.


1959 ◽  
Vol 36 (2) ◽  
pp. 193-201 ◽  
Author(s):  
Julius A. Goldbarg ◽  
Esteban P. Pineda ◽  
Benjamin M. Banks ◽  
Alexander M. Rutenburg

Sign in / Sign up

Export Citation Format

Share Document