scholarly journals Dimethylarginine Dimethylaminohydrolase-1 Transgenic Mice Are Not Protected from Ischemic Stroke

PLoS ONE ◽  
2009 ◽  
Vol 4 (10) ◽  
pp. e7337 ◽  
Author(s):  
Frank Leypoldt ◽  
Chi-Un Choe ◽  
Mathias Gelderblom ◽  
Eike-Christin von Leitner ◽  
Dorothee Atzler ◽  
...  
2021 ◽  
Author(s):  
Maximilian Wilmes ◽  
Carolina Pinto Espinoza ◽  
Peter Ludewig ◽  
Arthur Liesz ◽  
Annette Nicke ◽  
...  

Abstract BackgroundPrevious studies have demonstrated that purinergic receptors could be therapeutic targets to modulate the inflammatory response in multiple brain disease models. However, tools for the selective and efficient targeting of these receptors are scarce. The new development of P2X7-specific nanobodies (nbs) enables us to effectively block the P2X7-channel.MethodsTemporary middle cerebral artery occlusion (tMCAO) in wildtype and P2X7-transgenic mice was used as a model for ischemic stroke. ATP release was assessed in transgenic ATP sensor mice. Stroke size was measured without treatment and after injection of P2X7-specific nbs i.v. and i.c.v. directly before tMCAO-surgery. P2X7-GFP expressing transgenic mice were used to show immunhistochemically P2X7 distribution in the brain. In vitro cultured microglia were used to investigate calcium-influx, pore-formation via DAPI uptake, caspase 1 activation and IL-1b release after incubation with P2X7-specific nbs. ResultsATP sensor mice showed an increase of ATP-release in the ischemic hemisphere compared to the contralateral hemisphere or sham mice up to 24 h after stroke. We could further verify the role of the ATP-P2X7 axis in P2X7-overexpressing mice, which showed significantly greater stroke volumes after 24 h. In vitro experiments with primary microglia cells showed that P2X7-specific nanobodies were capable of dampening the ATP-trigged calcium-influx and formation of membrane pores measured by Fluo4 fluorescence or DAPI uptake. We found a lower caspase 1 activity and a subsequently lower IL-1b release. However, the intravenous (i.v.) injection of P2X7-specific nanobodies compared to isotype controls before the tMCAO-surgery did not result in smaller stroke size compared to isotype controls. As demonstrated by FACS, nbs had only reached brain infiltrating macrophages but not microglia. To reach microglia, we injected the P2X7-spezific nbs or the isotype directly intraventricularly (icv). 30 mg of P2X7-specific nbs proved efficient for microglial targeting, reducing post-stroke microglia activation and stroke size significantly.ConclusionHere, we demonstrate the importance of locally produced ATP for the tissue damage observed in ischemic stroke and we show the potential of icv injected P2X7-specific nbs to reduce ischemic tissue damage.


Author(s):  
Hai‐Han Yu ◽  
Xiao‐Tong Ma ◽  
Xue Ma ◽  
Man Chen ◽  
Yun‐Hui Chu ◽  
...  

Background Remote limb ischemic postconditioning (RLIPoC) has been demonstrated to protect against ischemic stroke. However, the underlying mechanisms of RLIPoC mediating cross‐organ protection remain to be fully elucidated. Methods and Results Ischemic stroke was induced by middle cerebral artery occlusion for 60 minutes. RLIPoC was performed with 3 cycles of 10‐minute ischemia followed by 10‐minute reperfusion of the bilateral femoral arteries immediately after middle cerebral artery reperfusion. The percentage of regulatory T cells (Tregs) in the spleen, blood, and brain was detected using flow cytometry, and the number of Tregs in the ischemic hemisphere was counted using transgenic mice with an enhanced green fluorescent protein‐tagged Foxp3. Furthermore, the metabolic status was monitored dynamically using a multispectral optical imaging system. The Tregs were conditionally depleted in the depletion of Treg transgenic mice after the injection of the diphtheria toxin. The inflammatory response and neuronal apoptosis were investigated using immunofluorescent staining. Infarct volume and neurological deficits were evaluated using magnetic resonance imaging and the modified neurological severity score, respectively. The results showed that RLIPoC substantially reduced infarct volume, improved neurological function, and significantly increased Tregs in the spleen, blood, and ischemic hemisphere after middle cerebral artery occlusion. RLIPoC was followed by subsequent alteration in metabolites, such as flavin adenine dinucleotide and nicotinamide adenine dinucleotide hydrate, both in RLIPoC‐conducted local tissues and circulating blood. Furthermore, nicotinamide adenine dinucleotide hydrate can mimic RLIPoC in increasing Tregs. Conversely, the depletion of Tregs using depletion of Treg mice compromised the neuroprotective effects conferred by RLIPoC. Conclusions RLIPoC protects against ischemic brain injury, at least in part by activating and maintaining the Tregs through the nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide hydrate pathway.


Author(s):  
Joohyun Park ◽  
Jong Youl Kim ◽  
Yu Rim Kim ◽  
Meiying Huang ◽  
Ji Young Chang ◽  
...  

AbstractMonocytes recruitment from the blood to inflamed tissues following ischemic stroke is an important immune response to wound healing and tissue repair. Mouse monocytes can be endogenously divided into two distinct populations: pro-inflammatory or classical monocytes that express CCR2highCX3CR1low and circulate in blood, and anti-inflammatory or non-classical monocytes that express CCR2lowCX3CR1high and patrol locally. In this study of transgenic mice with functional CX3CR1GFP/+ or CX3CR1GFP/+-CCR2RFP/+, we found that CCR2highCX3CR1low monocytes recruited to the injured brain were cytokine-dependently converted into CCR2lowCX3CR1high macrophages, especially under the influence of IL-4 and IL-13, thereby attenuating the neuroinflammation following sterile ischemic stroke. The overall data suggest that (1) the regulation of monocyte-switching is one of the ultimate reparative strategies in ischemic stroke, and (2) the adaptation of monocytes in a locally inflamed milieu is vital to alleviating the effects of ischemic stroke through innate immunity.


2020 ◽  
Vol 11 (5) ◽  
pp. 1064-1076
Author(s):  
Eric Y. Hayden ◽  
Julia M. Huang ◽  
Malena Charreton ◽  
Stefanie M. Nunez ◽  
Jennifer N. Putman ◽  
...  

2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Roman N Rodionov ◽  
Silke Brilloff ◽  
Natalia Jarzebska ◽  
Anne Kolouschek ◽  
Jens Martens-Lobenhoffer ◽  
...  

Background: ADMA (asymmetric dimethylarginine) is an endogenous inhibitor of nitric oxide synthase. ADMA can be metabolized to citrulline by dimethylarginine dimethylaminohydrolase (DDAH). DDAH1 overexpression lowers ADMA and protects from angiotensin II - induced renal interstitial fibrosis and vascular oxidative stress. The goal of the current study was to test the hypothesis that transgenic overexpression of DDAH1 protects from angiotensin II-induced cardiac hypertrophy. Methods and Results: DDAH1 transgenic mice grew and developed normally and had decreased plasma ADMA levels. Angiotensin II was infused for four weeks in the dose of 0.75 mg/kg/day in DDAH1 transgenic mice and wild type littermates via osmotic minipumps. Echocardiography was performed in the first and fourth week after start of the infusion on anaesthetized mice. After 4 weeks of angiotensin II infusion wild type mice developed cardiac hypertrophy. The DDAH1 transgenic mice had higher left ventricular lumen to wall ratio compared to the wild type mice (1.76 ± 0.18 vs 1.15 ± 0.22, P<0.01). They also had lower left ventricular posterior wall thickness in systole and diastole as compared to the wild type controls (1.18 ± 0.03 mm vs 1.95 ± 0.16 mm, P<0.001 and 0.81 ± 0.03 mm vs 1.62 ± 0.25 mm, P<0.001, respectively). Conclusion: We demonstrated that upregulation of DDAH1 protects from angiotensin II-induced cardiac hypertrophy. Our findings suggest that ADMA plays a role in angiotensin II - induced myocardial remodeling. Upregulation of DDAH1 might be a potential approach for protection from angiotensin II - induced end organ damage.


Author(s):  
C. G. Plopper ◽  
C. Helton ◽  
A. J. Weir ◽  
J. A. Whitsett ◽  
T. R. Korfhagen

A wide variety of growth factors are thought to be involved in the regulation of pre- and postnatal lung maturation, including factors which bind to the epidermal growth factor receptor. Marked pulmonary fibrosis and enlarged alveolar air spaces have been observed in lungs of transgenic mice expressing human TGF-α under control of the 3.7 KB human SP-C promoter. To test whether TGF-α alters lung morphogenesis and cellular differentiation, we examined morphometrically the lungs of adult (6-10 months) mice derived from line 28, which expresses the highest level of human TGF-α transcripts among transgenic lines. Total volume of lungs (LV) fixed by airway infusion at standard pressure was similar in transgenics and aged-matched non-transgenic mice (Fig. 1). Intrapulmonary bronchi and bronchioles made up a smaller percentage of LV in transgenics than in non-transgenics (Fig. 2). Pulmonary arteries and pulmonary veins were a smaller percentage of LV in transgenic mice than in non-transgenics (Fig. 3). Lung parenchyma (lung tissue free of large vessels and conducting airways) occupied a larger percentage of LV in transgenics than in non-transgenics (Fig. 4). The number of generations of branching in conducting airways was significantly reduced in transgenics as compared to non-transgenic mice. Alveolar air space size, as measured by mean linear intercept, was almost twice as large in transgenic mice as in non-transgenics, especially when different zones within the lung were compared (Fig. 5). Alveolar air space occupied a larger percentage of the lung parenchyma in transgenic mice than in non-transgenic mice (Fig. 6). Collagen abundance was estimated in histological sections as picro-Sirius red positive material by previously-published methods. In intrapulmonary conducting airways, collagen was 4.8% of the wall in transgenics and 4.5% of the wall in non-transgenic mice. Since airways represented a smaller percentage of the lung in transgenics, the volume of interstitial collagen associated with airway wall was significantly less. In intrapulmonary blood vessels, collagen was 8.9% of the wall in transgenics and 0.7% of the wall in non-transgenics. Since blood vessels were a smaller percentage of the lungs in transgenics, the volume of collagen associated with the walls of blood vessels was five times greater. In the lung parenchyma, collagen was 51.5% of the tissue volume in transgenics and 21.2% in non-transgenics. Since parenchyma was a larger percentage of lung volume in transgenics, but the parenchymal tissue was a smaller percent of the volume, the volume of collagen associated with parenchymal tissue was only slightly greater. We conclude that overexpression of TGF-α during lung maturation alters many aspects of lung development, including branching morphogenesis of the airways and vessels and alveolarization in the parenchyma. Further, the increases in visible collagen previously associated with pulmonary fibrosis due to the overexpression of TGF-α are a result of actual increases in amounts of collagen and in a redistribution of collagen within compartments which results from morphogenetic changes. These morphogenetic changes vary by lung compartment. Supported by HL20748, ES06700 and the Cystic Fibrosis Foundation.


Sign in / Sign up

Export Citation Format

Share Document