Thyroid Hormone Receptor α1 Downregulation in Postischemic Heart Failure Progression: The Potential Role of Tissue Hypothyroidism

2010 ◽  
Vol 42 (10) ◽  
pp. 718-724 ◽  
Author(s):  
C. Pantos ◽  
I. Mourouzis ◽  
G. Galanopoulos ◽  
M. Gavra ◽  
P. Perimenis ◽  
...  
2020 ◽  
Vol 53 (5) ◽  
Author(s):  
Andrea Perra ◽  
Marta Anna Kowalik ◽  
Lavinia Cabras ◽  
Massimiliano Runfola ◽  
Simona Sestito ◽  
...  

2020 ◽  
Vol 73 ◽  
pp. S249
Author(s):  
Andrea Perra ◽  
Marta Anna Kowalik ◽  
Lavinia Cabras ◽  
Simona Onali ◽  
Cristina Migliore ◽  
...  

2004 ◽  
Vol 24 (20) ◽  
pp. 9026-9037 ◽  
Author(s):  
Daniel R. Buchholz ◽  
Akihiro Tomita ◽  
Liezhen Fu ◽  
Bindu D. Paul ◽  
Yun-Bo Shi

ABSTRACT Thyroid hormone (T3) has long been known to be important for vertebrate development and adult organ function. Whereas thyroid hormone receptor (TR) knockout and transgenic studies of mice have implicated TR involvement in mammalian development, the underlying molecular bases for the resulting phenotypes remain to be determined in vivo, especially considering that T3 is known to have both genomic, i.e., through TRs, and nongenomic effects on cells. Amphibian metamorphosis is an excellent model for studying the role of TR in vertebrate development because of its total dependence on T3. Here we investigated the role of TR in metamorphosis by developing a dominant positive mutant thyroid hormone receptor (dpTR). In the frog oocyte transcription system, dpTR bound a T3-responsive promoter and activated the promoter independently of T3. Transgenic expression of dpTR under the control of a heat shock-inducible promoter in premetamorphic tadpoles led to precocious metamorphic transformations. Molecular analyses showed that dpTR induced metamorphosis by specifically binding to known T3 target genes, leading to increased local histone acetylation and gene activation, similar to T3-bound TR during natural metamorphosis. Our experiments indicated that the metamorphic role of T3 is through genomic action of the hormone, at least on the developmental parameters tested. They further provide the first example where TR is shown to mediate directly and sufficiently these developmental effects of T3 in individual organs by regulating target gene expression in these organs.


2008 ◽  
Vol 197 (1) ◽  
pp. 151-158 ◽  
Author(s):  
J Kwakkel ◽  
O Chassande ◽  
H C van Beeren ◽  
W M Wiersinga ◽  
A Boelen

The downregulation of liver deiodinase type 1 (D1) is supposed to be one of the mechanisms behind the decrease in serum tri-iodothyronine (T3) observed during non-thyroidal illness (NTI). Liver D1 mRNA expression is positively regulated by T3, mainly via the thyroid hormone receptor (TR)β1. One might thus expect that lacking the TRβ gene would result in diminished downregulation of liver D1 expression and a smaller decrease in serum T3 during illness. In this study, we used TRβ−/− mice to evaluate the role of TRβ in lipopolysaccharide (LPS, a bacterial endotoxin)-induced changes in thyroid hormone metabolism. Our results show that the LPS-induced serum T3 and thyroxine and liver D1 decrease takes place despite the absence of TRβ. Furthermore, we observed basal differences in liver D1 mRNA and activity between TRβ−/− and wild-type mice and TRβ−/− males and females, which did not result in differences in serum T3. Serum T3 decreased rapidly after LPS administration, followed by decreased liver D1, indicating that the contribution of liver D1 during NTI may be limited with respect to decreased serum T3 levels. Muscle D2 mRNA did not compensate for the low basal liver D1 observed in TRβ−/− mice and increased in response to LPS in TRβ−/− and WT mice. Other (TRβ independent) mechanisms like decreased thyroidal secretion and decreased binding to thyroid hormone-binding proteins probably play a role in the early decrease in serum T3 observed in this study.


2014 ◽  
Vol 28 (5) ◽  
pp. 745-757 ◽  
Author(s):  
Amy Schroeder ◽  
Robyn Jimenez ◽  
Briana Young ◽  
Martin L. Privalsky

Abstract T4 (3,5,3′,5′-tetraiodo-l-thyronine) is classically viewed as a prohormone that must be converted to the T3 (3,5,3′-triiodo-l-thyronine) form for biological activity. We first determined that the ability of reporter genes to respond to T4 and to T3 differed for the different thyroid hormone receptor (TR) isoforms, with TRα1 generally more responsive to T4 than was TRβ1. The response to T4 vs T3 also differed dramatically in different cell types in a manner that could not be attributed to differences in deiodinase activity or in hormone affinity, leading us to examine the role of TR coregulators in this phenomenon. Unexpectedly, several coactivators, such as steroid receptor coactivator-1 (SRC1) and thyroid hormone receptor-associated protein 220 (TRAP220), were recruited to TRα1 nearly equally by T4 as by T3 in vitro, indicating that TRα1 possesses an innate potential to respond efficiently to T4 as an agonist. In contrast, release of corepressors, such as the nuclear receptor coreceptor NCoRω, from TRα1 by T4 was relatively inefficient, requiring considerably higher concentrations of this ligand than did coactivator recruitment. Our results suggest that cells, by altering the repertoire and abundance of corepressors and coactivators expressed, may regulate their ability to respond to T4, raising the possibility that T4 may function directly as a hormone in specific cellular or physiological contexts.


Sign in / Sign up

Export Citation Format

Share Document