Exercise affects mitochondrial function and insulin response in skeletal muscle and fat differentially depending on genetic predisposition

2014 ◽  
Vol 62 (S 01) ◽  
Author(s):  
M. Schwarzer ◽  
A. Molis ◽  
C. Werner ◽  
A. Schrepper ◽  
S.L. Britton ◽  
...  
Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1891-P
Author(s):  
THERESIA SARABHAI ◽  
CHRYSI KOLIAKI ◽  
SABINE KAHL ◽  
DOMINIK PESTA ◽  
LUCIA MASTROTOTARO ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liselotte Bruun Christiansen ◽  
Tine Lovsø Dohlmann ◽  
Trine Pagh Ludvigsen ◽  
Ewa Parfieniuk ◽  
Michal Ciborowski ◽  
...  

AbstractStatins lower the risk of cardiovascular events but have been associated with mitochondrial functional changes in a tissue-dependent manner. We investigated tissue-specific modifications of mitochondrial function in liver, heart and skeletal muscle mediated by chronic statin therapy in a Göttingen Minipig model. We hypothesized that statins enhance the mitochondrial function in heart but impair skeletal muscle and liver mitochondria. Mitochondrial respiratory capacities, citrate synthase activity, coenzyme Q10 concentrations and protein carbonyl content (PCC) were analyzed in samples of liver, heart and skeletal muscle from three groups of Göttingen Minipigs: a lean control group (CON, n = 6), an obese group (HFD, n = 7) and an obese group treated with atorvastatin for 28 weeks (HFD + ATO, n = 7). Atorvastatin concentrations were analyzed in each of the three tissues and in plasma from the Göttingen Minipigs. In treated minipigs, atorvastatin was detected in the liver and in plasma. A significant reduction in complex I + II-supported mitochondrial respiratory capacity was seen in liver of HFD + ATO compared to HFD (P = 0.022). Opposite directed but insignificant modifications of mitochondrial respiratory capacity were seen in heart versus skeletal muscle in HFD + ATO compared to the HFD group. In heart muscle, the HFD + ATO had significantly higher PCC compared to the HFD group (P = 0.0323). In the HFD group relative to CON, liver mitochondrial respiration decreased whereas in skeletal muscle, respiration increased but these changes were insignificant when normalizing for mitochondrial content. Oral atorvastatin treatment in Göttingen Minipigs is associated with a reduced mitochondrial respiratory capacity in the liver that may be linked to increased content of atorvastatin in this organ.


2016 ◽  
Vol 291 (49) ◽  
pp. 25306-25318 ◽  
Author(s):  
Xijun Liang ◽  
Lin Liu ◽  
Tingting Fu ◽  
Qian Zhou ◽  
Danxia Zhou ◽  
...  

2013 ◽  
Vol 114 (2) ◽  
pp. 230-237 ◽  
Author(s):  
Terence E. Ryan ◽  
Jared T. Brizendine ◽  
Kevin K. McCully

Near-infrared spectroscopy (NIRS) can be used to measure muscle oxygen consumption (mVO2) using arterial occlusions. The recovery rate of mVO2after exercise can provide an index of skeletal muscle mitochondrial function. The purpose of this study was to test the influence of exercise modality and intensity on NIRS measurements of mitochondrial function. Three experiments were performed. Thirty subjects (age: 18–27 yr) were tested. NIRS signals were corrected for blood volume changes. The recovery of mVO2after exercise was fit to a monoexponential curve, and a rate constant was calculated (directly related to mitochondrial function). No differences were found in NIRS rate constants for VOL and ES exercises (2.04 ± 0.57 vs. 2.01 ± 0.59 min−1for VOL and ES, respectively; P = 0.317). NIRS rate constants were independent of the contraction frequency for both VOL and ES (VOL: P = 0.166 and ES: P = 0.780). ES current intensity resulted in significant changes to the normalized time-tension integral (54 ± 11, 82 ± 7, and 100 ± 0% for low, medium, and high currents, respectively; P < 0.001) but did not influence NIRS rate constants (2.02 ± 0.54, 1.95 ± 0.44, 2.02 ± 0.46 min−1for low, medium, and high currents, respectively; P = 0.771). In summary, NIRS measurements of skeletal muscle mitochondrial function can be compared between VOL and ES exercises and were independent of the intensity of exercise. NIRS represents an important new technique that is practical for testing in research and clinical settings.


2016 ◽  
Vol 1857 ◽  
pp. e100-e101
Author(s):  
Giovanna Trinchese ◽  
Gina Cavaliere ◽  
Chiara De Filippo ◽  
Anna De Angelis ◽  
Antonio Della Gatta ◽  
...  

2021 ◽  
Vol 21 ◽  
Author(s):  
Vaishali K. ◽  
Nitesh Kumar ◽  
Vanishree Rao ◽  
Rakesh Krishna Kovela ◽  
Mukesh Kumar Sinha

: Skeletal muscles must generate and distribute energy properly in order to function perfectly. Mitochondria in skeletal muscle cells form vast networks to meet this need, and their functions may improve as a result of exercise. In the present review, we discussed exercise-induced mitochondrial adaptations, age-related mitochondrial decline, and a biomarker as a mitochondrial function indicator and exercise interference.


Sign in / Sign up

Export Citation Format

Share Document