Oxidized fatty acids from Clematis species activate peroxisome proliferator activated receptors (PPARs) in vitro

Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
EM Pferschy-Wenzig ◽  
B Lugger ◽  
AG Atanasov ◽  
C Malainer ◽  
EH Heiss ◽  
...  
2020 ◽  
Vol 16 ◽  
pp. 297-304 ◽  
Author(s):  
Amit Raj Sharma ◽  
Enjuro Harunari ◽  
Naoya Oku ◽  
Nobuyasu Matsuura ◽  
Agus Trianto ◽  
...  

A pair of geometrically isomeric unsaturated keto fatty acids, (6E,8Z)- and (6E,8E)-5-oxo-6,8-tetradecadienoic acids (1 and 2), were isolated from the culture broth of an actinomycete of the genus Micrococcus, which was associated with a stony coral, Catalaphyllia sp. Their chemical structures were elucidated by spectroscopic analysis including NMR and MS, with special assistance of spin system simulation studies for the assignment of an E geometry at C8 in 2. As metabolites of microbes, compounds 1 and 2 are unprecedented in terms of bearing a 2,4-dienone system. Both 1 and 2 showed antibacterial activity against the plant pathogen Rhizobium radiobacter and the fish pathogen Tenacibaculum maritimum, with a contrasting preference that 1 is more effective to the former strain while 2 is so to the latter. In addition, compounds 1 and 2 displayed agonistic activity against peroxisome proliferator-activated receptors (PPARs) with an isoform specificity towards PPARα and PPARγ.


1999 ◽  
Vol 3 (3) ◽  
pp. 397-403 ◽  
Author(s):  
H.Eric Xu ◽  
Millard H Lambert ◽  
Valerie G Montana ◽  
Derek J Parks ◽  
Steven G Blanchard ◽  
...  

PPAR Research ◽  
2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Pieter de Lange ◽  
Assunta Lombardi ◽  
Elena Silvestri ◽  
Fernando Goglia ◽  
Antonia Lanni ◽  
...  

The peroxisome proliferator-activated receptors (PPARs), which are ligand-inducible transcription factors expressed in a variety of tissues, have been shown to perform key roles in lipid homeostasis. In physiological situations such as fasting and physical exercise, one PPAR subtype, PPARδ, triggers a transcriptional program in skeletal muscle leading to a switch in fuel usage from glucose/fatty acids to solely fatty acids, thereby drastically increasing its oxidative capacity. The metabolic action of PPARδ has also been verified in humans. In addition, it has become clear that the action of PPARδ is not restricted to skeletal muscle. Indeed, PPARδ has been shown to play a crucial role in whole-body lipid homeostasis as well as in insulin sensitivity, and it is active not only in skeletal muscle (as an activator of fat burning) but also in the liver (where it can activate glycolysis/lipogenesis, with the produced fat being oxidized in muscle) and in the adipose tissue (by incrementing lipolysis). The main aim of this review is to highlight the central role for activated PPARδ in the reversal of any tendency toward the development of insulin resistance.


PPAR Research ◽  
2008 ◽  
Vol 2008 ◽  
pp. 1-14 ◽  
Author(s):  
Iris J. Edwards ◽  
Joseph T. O'Flaherty

Omega-3 (or n-3) polyunsaturated fatty acids (PUFAs) and their metabolites are natural ligands for peroxisome proliferator receptor activator (PPAR)γand, due to the effects of PPARγon cell proliferation, survival, and differentiation, are potential anticancer agents. Dietary intake of omega-3 PUFAs has been associated with a reduced risk of certain cancers in human populations and in animal models. In vitro studies have shown that omega-3 PUFAs inhibit cell proliferation and induce apoptosis in cancer cells through various pathways but one of which involves PPARγactivation. The differential activation of PPARγand PPARγ-regulated genes by specific dietary fatty acids may be central to their distinct roles in cancer. This review summarizes studies relating PUFAs to PPARγand cancer and offers a new paradigm relating an n-3 PUFA through PPARγto the expression of the cell surface proteoglycan, syndecan-1, and to the death of cancer cells.


PPAR Research ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Angela Tesse ◽  
Ramaroson Andriantsitohaina ◽  
Thierry Ragot

Activation of peroxisome proliferator-activated receptors (PPARs), and particularly of PPARαand PPARγ, using selective agonists, is currently used in the treatment of metabolic diseases such as hypertriglyceridemia and type 2 diabetes mellitus. PPARαand PPARγanti-inflammatory, antiproliferative and antiangiogenic properties in cardiovascular cells were extensively clarified in a variety of in vitro and in vivo models. In contrast, the role of PPARδin cardiovascular system is poorly understood. Prostacyclin, the predominant prostanoid released by vascular cells, is a putative endogenous agonist for PPARδ, but only recently PPARδselective synthetic agonists were found, improving studies about the physiological and pathophysiological roles of PPARδactivation. Recent reports suggest that the PPARδactivation may play a pivotal role to regulate inflammation, apoptosis, and cell proliferation, suggesting that this transcriptional factor could become an interesting pharmacological target to regulate cardiovascular cell apoptosis, proliferation, inflammation, and metabolism.


2010 ◽  
Vol 33 (5) ◽  
pp. 854-861 ◽  
Author(s):  
Hiroshi Yokoi ◽  
Hajime Mizukami ◽  
Akito Nagatsu ◽  
Hiroki Tanabe ◽  
Makoto Inoue

Sign in / Sign up

Export Citation Format

Share Document