Isoxazol-5-ones as Strategic Building Blocks in Organic Synthesis

Synthesis ◽  
2018 ◽  
Vol 50 (13) ◽  
pp. 2473-2489 ◽  
Author(s):  
Amanda da Silva ◽  
Alessandra Fernandes ◽  
Samuel Thurow ◽  
Mateus Stivanin ◽  
Igor Jurberg

Isoxazol-5-one rings have been identified as relevant motifs in drug candidates, agrochemicals, and materials. Furthermore, this heterocycle has been also applied as a versatile building block for the preparation of a variety of densely functionalized molecules. This short review will present the most representative applications of isoxazol-5-ones in organic synthesis while discussing their properties and reactivity.1 Introduction1.1 General Aspects1.1.1 Tautomerism1.1.2 Importance: Natural Products Isolation, Biological Activity, and Materials1.1.3 Preparation Methods2 Isoxazol-5-ones in Organic Synthesis2.1 General Reactivity2.2 Specific Examples2.2.1 Alkylation Strategies2.2.2 Alkyne Synthesis2.2.3 Annulation Reactions2.2.4 N–O Bond Insertions2.2.4.1 Preparation of 1,3-Oxazin-6-ones3 Conclusions

Synthesis ◽  
2020 ◽  
Author(s):  
Chuan Wang ◽  
Shixia Su

AbstractAsymmetric dihydroxylation of alkenes is one of the cornerstone reactions in organic synthesis, providing a direct entry to optically active vicinal diols, which are not only a subunit in natural products but also versatile building blocks. In recent years, considerable progress in catalytic asymmetric osmium-free dihydroxylation has been achieved. This short review presents a concise summary of the reported methods of catalytic asymmetric osmium-free dihydroxylation.1 Introduction2 Iron-Catalyzed Asymmetric syn-Dihydroxylation of Alkenes3 Manganese-Catalyzed Asymmetric syn-Dihydroxylation of Alkenes4 Palladium/Gold Bimetallic Nanocluster-Catalyzed Asymmetric syn-Dihydroxylation of Alkenes5 Enzyme-Catalyzed Asymmetric anti-Dihydroxylation of Alkenes6 Amine-Catalyzed Asymmetric Formal anti-Dihydroxylation of Enals7 Diselenide-Catalyzed anti-Dihydroxylation of Alkenes8 Molybdenum-Catalyzed Asymmetric anti-Dihydroxylation of Allylic­ Alcohols9 Phase-Transfer-Catalyzed Asymmetric Dihydroxylation of α-Aryl Acrylates10 Conclusion


Synthesis ◽  
2021 ◽  
Author(s):  
Prasanjit Ghosh ◽  
Swati Lekha Mondal ◽  
Mahiuddin Baidya

The N–O heterocycles are biologically relevant scaffolds and versatile building blocks in contemporary organic synthesis. In this short review, we effort to showcase the involvement and elevation of various cycloaddition strategies towards the production of N–O heterocycles 1,2-oxazines, 1,2-oxazepanes, and 1,2-oxazetidines. A blueprint of advantages and challenges associated with these synthetic endeavors is provided.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1510
Author(s):  
Renato Dalpozzo ◽  
Raffaella Mancuso

Benzopyran and benzodihydropyran (chromane) nuclei are the core structure of many natural products, in particular flavonoids. Many compounds possessing this structure are nutraceuticals, pharmaceutical nutrients. Therefore, benzopyran and chromane scaffolds are important building blocks in organic synthesis and many efforts have been made to set up efficient methods for their synthesis. In particular, asymmetric methods are of great importance, being natural products, and generally chiral substances. This review aims to cover literature in the range 2017–first half of 2019.


Synthesis ◽  
2018 ◽  
Vol 50 (06) ◽  
pp. 1175-1198 ◽  
Author(s):  
Laurent Commeiras ◽  
Muhammad Idham Darussalam Mardjan ◽  
Jean-Luc Parrain

α,β-Unsaturated γ-hydroxy-γ-butyrolactams are of a great interest due to their presence in designed pharmaceutical molecules and numerous natural products displaying a broad spectrum of biological activities. In addition, these five-membered heterocyclic compounds are also relevant and versatile building blocks in organic synthesis. In this context, strategies for the construction of these scaffolds has triggered considerable attention and this review highlights the progress in the formation of α,β-unsaturated γ-hydroxy-γ-butyrolactams (5-hydroxy-1,5-dihydro-2H-pyrrol-2-ones).1 Introduction2 Intramolecular Routes3 Intermolecular Routes4 Oxidation of Heterocyclic Compounds5 Miscellaneous6 Conclusion


Author(s):  
Lewin T. Wint ◽  
Marija Kovacevic ◽  
Matt Waters ◽  
Mettler-Toledo AutoChem

Traditional organic synthesis is often cumbersome and time consuming. Significant effort by manufacturers of automated systems has been directed at increasing the speed, efficiency, and consistency of performing chemical reactions. To date, the numbers of integrated systems that combine all the relevant steps of compound preparation are few. Using the five automated systems in tandem can successfully streamline research and development of potential drug candidates. The features of these workstations offer a unique approach for supporting the convenient synthesis and workup of diverse compounds without compromising reagent types or conditions used for synthesis. This poster details an example of the automated drug discovery approach to high throughput organic synthesis using the solution phase synthesis of a series of 1-indanones as building blocks and subsequent reductive amination reactions to generate a diverse group of amines. The purpose of each automated system is outlined along with its role in generating the small library as an illustration of the importance of time saving devices in laboratories.


RSC Advances ◽  
2017 ◽  
Vol 7 (22) ◽  
pp. 13198-13211 ◽  
Author(s):  
Sattar Arshadi ◽  
Esmail Vessally ◽  
Ladan Edjlali ◽  
Ebrahim Ghorbani-Kalhor ◽  
Rahim Hosseinzadeh-Khanmiri

Nitrogen-containing heterocyclic compounds are not only prevalent in an extensive number of natural products and synthetic pharmaceuticals but are also used as building blocks in organic synthesis.


Synthesis ◽  
2021 ◽  
Author(s):  
Zhi Tang ◽  
Zhou Tong ◽  
Shuang-Feng Yin ◽  
Nobuaki Kambe ◽  
Renhua Qiu

Benzofuranone is a sort of important skeleton in many fields, such as natural products, pharmaceuticals, building blocks, antioxidants and dyes. Their efficient synthesis and transformations have attracted great attentions in organic synthesis. They can be synthesized by Friedel−Crafts reaction, intramolecular dehydration ring-closing reaction and transition-metal-catalyzed reaction, etc. And their direct utilization to prepare other functional molecules enhances their further application. Due to their low pKa value and easy enolization ability, the transformation of benzofuranones via C(3)-H bond functionalization is a hot issue in the last ten years. Herein, we highlight the advances on the synthesis of benzofuranones and its transformation via C-H functionalization. Some of other transformations related to benzofuranones are also referred in this review.


Author(s):  
Nadezhda V. Vchislo ◽  
Ekaterina A. Verochkina

: α-Functionally substituted α,β-unsaturated aldehydes belong to the highly reactive class of compounds. They are used as versatile building blocks in organic synthesis. Due to the presence of several reactive sites in their structure, α,β-unsaturated aldehydes are widely employed as precursors of various acyclic and heterocyclic compounds, as well as complex natural products. At the same time, the acrylic systems with heteroatomic substituents (OAlk, SAlk) in the α-position are poorly studied. Therefore, it is impossible to reliably establish the distribution of electron density and to evaluate the real reactivity of each new representative of this class of compounds. This minireview summarizes the works demonstrating the broad applicability of 3-substituted 2-alkoxy and 2-alkylthiopropenals in organic synthesis.


Sign in / Sign up

Export Citation Format

Share Document