Inhibitory Effect of Argatroban on Thrombin-induced MAP Kinase Activation

1998 ◽  
Vol 80 (09) ◽  
pp. 528-529 ◽  
Author(s):  
Y. Nakaya ◽  
A. Takahashi ◽  
N. Inoue ◽  
T. Taniguchi ◽  
Y. Ishikawa ◽  
...  
1995 ◽  
Vol 84 (1-2) ◽  
pp. 84-84
Author(s):  
Marie-Hélène Verlhac-Chedotal ◽  
Jacek Kubiak ◽  
Michèle Weber ◽  
William Colledge ◽  
Martin Evans ◽  
...  

Zygote ◽  
2004 ◽  
Vol 12 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Radomir Kren ◽  
Sugako Ogushi ◽  
Takashi Miyano

This study was conducted to evaluate the effect of caffeine on the meiotic maturation of porcine oocytes. Oocyte–cumulus complexes were collected from slaughterhouse-derived ovaries and cultured for 24, 32 or 48 h in medium 199 supplemented with 10% fetal calf serum, 10 μg/ml FSH, 50 μg/ml sodium pyruvate and 50 μg/ml gentamicin in the presence or absence of 2.5 mM caffeine. Caffeine inhibited the meiotic resumption of pig oocytes effectively after 24 h of culture, and 95.5% of oocytes were arrested at the germinal vesicle (GV) stage (control 17.8%, p<0.05). Prolonged culture with caffeine up to 32 h or 48 h, however, resulted in a significant decrease in the inhibitory effect (GV: 13.8% and 8.2%). The number of oocytes at metaphase II after 48 h of culture in the presence of caffeine was significantly lower than that in the control medium (65.3% vs 94.7%, p<0.05). The withdrawal of caffeine after 24 h of culture resulted in the resumption of meiotic maturation, and the oocytes reached metaphase II after 48 h. However, the ability of caffeine-treated oocytes to develop to blastocysts after artificial activation was lower than that of the control (5.5% vs 9.1%, p<0.05). Caffeine treatment significantly increased cAMP levels in the oocytes after 24 h of culture, while both Cdc2 kinase and MAP kinase activation were inhibited in the oocytes. These results suggest that caffeine, similarly to other purine derivatives, prolongs the meiotic arrest of porcine oocytes at the GV stage, perhaps by its action of increasing the cAMP level and by the suppression of Cdc2 kinase and MAP kinase activities in the oocytes.


1999 ◽  
Vol 19 (12) ◽  
pp. 8314-8325 ◽  
Author(s):  
Feng Cong ◽  
Bing Yuan ◽  
Stephen P. Goff

ABSTRACT A novel member of the p62 dok family of proteins, termed DOKL, is described. DOKL contains features of intracellular signaling molecules, including an N-terminal PH (pleckstrin homology) domain, a central PTB (phosphotyrosine binding) domain, and a C-terminal domain with multiple potential tyrosine phosphorylation sites and proline-rich regions, which might serve as docking sites for SH2- and SH3-containing proteins. The DOKL gene is predominantly expressed in bone marrow, spleen, and lung, although low-level expression of the RNA can also be detected in other tissues. DOKL and p62 dok bind through their PTB domains to the Abelson tyrosine kinase in a kinase-dependent manner in both yeast and mammalian cells. DOKL is phosphorylated by the Abl tyrosine kinase in vivo. In contrast to p62 dok , DOKL lacks YxxP motifs in the C terminus and does not bind to Ras GTPase-activating protein (RasGAP) upon phosphorylation. Overexpression of DOKL, but not p62 dok , suppresses v-Abl-induced mitogen-activated protein (MAP) kinase activation but has no effect on constitutively activated Ras- and epidermal growth factor-induced MAP kinase activation. The inhibitory effect requires the PTB domain of DOKL. Finally, overexpression of DOKL in NIH 3T3 cells inhibits the transforming activity of v-Abl. These results suggest that DOKL may modulate Abl function.


1999 ◽  
Vol 258 (2) ◽  
pp. 443-447 ◽  
Author(s):  
Shu Hashimoto ◽  
Ken Matsumoto ◽  
Yasuhiro Gon ◽  
Sachiko Furuichi ◽  
Shuichiro Maruoka ◽  
...  

Nature ◽  
1996 ◽  
Vol 383 (6600) ◽  
pp. 547-550 ◽  
Author(s):  
Ivan Dikic ◽  
George Tokiwa ◽  
Sima Lev ◽  
Sara A. Courtneidge ◽  
Joseph Schlessinger

1996 ◽  
Vol 135 (6) ◽  
pp. 1633-1642 ◽  
Author(s):  
S Miyamoto ◽  
H Teramoto ◽  
J S Gutkind ◽  
K M Yamada

Integrins mediate cell adhesion, migration, and a variety of signal transduction events. These integrin actions can overlap or even synergize with those of growth factors. We examined for mechanisms of collaboration or synergy between integrins and growth factors involving MAP kinases, which regulate many cellular functions. In cooperation with integrins, the growth factors EGF, PDGF-BB, and basic FGF each produced a marked, transient activation of the ERK (extracellular signal-regulated kinase) class of MAP kinase, but only if the integrins were both aggregated and occupied by ligand. Transmembrane accumulation of total tyrosine-phosphorylated proteins, as well as nonsynergistic MAP kinase activation, could be induced by simple integrin aggregation, whereas enhanced transient accumulation of the EGF-receptor substrate eps8 required integrin aggregation and occupancy, as well as EGF treatment. Each type of growth factor receptor was itself induced to aggregate transiently by integrin ligand-coated beads in a process requiring both aggregation and occupancy of integrin receptors, but not the presence of growth factor ligand. Synergism was also observed between integrins and growth factors for triggering tyrosine phosphorylation of EGF, PDGF, and FGF receptors. This collaborative response also required both integrin aggregation and occupancy. These studies identify mechanisms in the signal transduction response to integrins and growth factors that require various combinations of integrin aggregation and ligands for integrin or growth factor receptors, providing opportunities for collaboration between these major regulatory systems.


2001 ◽  
Vol 33 (6) ◽  
pp. A89
Author(s):  
Costas Pantos ◽  
Vassilliki Malliopoulou ◽  
Evangelia Karamanoli ◽  
Stelios Tzeis ◽  
Iordanis S. Mourouzis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document