Organic Nitrates: Direct Antiplatelet Effects and Synergism with Prostacyclin

1988 ◽  
Vol 59 (02) ◽  
pp. 207-211 ◽  
Author(s):  
Raffaele De Caterina ◽  
Daniela Giannessi ◽  
Walter Bernini ◽  
Annamaria Mazzone

SummaryIsosorbide dinitrate inhibits platelet function in vivo at concentrations about 10 times lower than in vitro (10-7 -10-6 vs. 10-6 -10-5 M). We investigated two possible reasons for this difference. Isosorbide dinitrate and its in vivo longer-lived metabolites, isosorbide-2- and isosorbide-5-mononitrate were incubated for 5 min with human platelet-rich plasma or washed platelets; irreversible aggregation was induced with threshold doses of ADP, adrenaline, collagen, arachidonic acid and thrombin, and thromboxane (TX) B2 production was measured by radioimmunoassay. Moreover, the concentration of exogenous prostacyclin required to inhibit platelet aggregation by 50% (IC50) after preincubation with isosorbide dinitrate or vehicle was determined. At 10-7 M, only isosorbide-2-mononitrate inhibited aggregation (-12%, p >0.05) and TX production (-36%, p >0.01) by ADP. At 10-6 M isosorbide-2-mononitrate inhibited aggregation by adrenaline more than the dinitrate (-41% vs. -25%, p >0.05). In addition, at supra-threshold doses of all the aggregating agents, isosorbide dinitrate decreased IC50 of prostacyclin from 2.7 ± 1.2 to 0.36 ± 0.2 nM. Generation of a platelet-active metabolite and synergism with prostacyclin are new properties of isosorbide dinitrate that may account for antiplatelet effects in vivo.

1987 ◽  
Author(s):  
R De Caterina ◽  
D Giannessi ◽  
W Bernini ◽  
A Mazzone

Organic nitrates (nitroglycerin, isosorbide dinitrate) are inhibitors of platelet function more effective in vivo than in vitro (Am J Cardiol 1984; 53:1683), the in vivo effect requiring concentrations 10-100 times lower than in vitro. We have previously excluded that such difference is due to elicitation by nitrates of prostacyclin synthesis in human endothelial cells or vascular fragments (Circulation 1985; 71:176). In the present study we evaluated alternative explanations: that the difference is due (1) to generation of more active drug metabolites; (2) to synergism between nitrates and prostacyclin in the inhibition of platelet function. Isosorbide dinitrate (ISDN) and its two main in vivo metabolites, isosorbide-2-mononitrate (IS-2-MN) and isosorbide-5-mononitrate (IS-5-MN), were compared in their ability to inhibit platelet aggregation and thromboxane (TX) B2 formation (RIA) in respone to threshold doses of ADP, adrenaline, collagen, arachidonic acid and thrombin in citrated platelet-rich plasma. The same tests were performed in 10 healthy volunteers before, during (at 5, 15 and 30 min) and after infusion of the three drugs at 8 mg/h for 30 min in 3 different days. Finally, the concentration of prostacyclin (and its stable analogue Iloprost) added in vitro to platelets, and required to inhibit platelet aggregation by 50% (IC50) after 5 min pre-incubation of platelets with nitrates was determined. In vitro incubation of platelets with IS-2-MN resulted in greater inhibition of both aggregation and TX formation (by ADP and adrenaline) than with ISDN and IS-5-MN. At 10−7M, only IS-2-MN significantly inhibited aggregation (−12%, P< 0.05) and TX formation (from 9.2±1.8 to 5.9± 0.6 ng/ml) by ADP, while minimum effective concentrations were 10−7M for ISDN and 10−7m for IS-5-MN. These in vitro differences are unlikely to be the explanation of in vivo findings, since IS-2-MN, ISDN and IS-5-MN were equipotent when administered in vivo (complete abolition of secondary wave after ADP and adrenaline at 30 min of infusion). At supra-threshold doses of all the aggregating agents, all three drugs, at 10−7M, decreased IC50 for prostacyclin from 2.9± 1.3 to 0.32± 0.18 nM (P< 0.01). Synergim with prostacyclin is most likely to account, at least partially, for in vivo antiplatelet effects by organic nitrates.


1990 ◽  
Vol 78 (1) ◽  
pp. 113-116 ◽  
Author(s):  
Giovanni Anfossi ◽  
Elena Mularoni ◽  
Mariella Trovati ◽  
Paola Massucco ◽  
Luigi Mattiello ◽  
...  

1. The release of arginine vasopressin from human platelets was investigated in platelet-rich plasma after irreversible aggregation induced by adenosine 5′-pyrophosphate, collagen, sodium arachidonate, thrombin and adrenaline in vitro. 2. Arginine vasopressin levels were significantly higher in the supernatant from stimulated platelet-rich plasma than from unstimulated samples, reaching 3.5 × 10−12 (range 1.6–12.5 × 10−12) mol/l in the absence of an aggregating agent, 8.8 × 10−12 (range 4.2–17.5 × 10−12) mol/l after adenosine 5′-pyrophosphate, 13.7 × 10−12 (2.2–63.2 × 10−12) mol/l after collagen, 7.8 × 10−12 (2.2–14.6 × 10−12) mol/l after sodium arachidonate, 7.8 × 10−12 (2.2–16.3 × 10−12) mol/l after thrombin and 12.2 × 10−12 (4.8–32.1 × 10−12) mol/l after adrenaline. 3. An arginine vasopressin level of 18 × 10−12 mol/l, which can be achieved physiologically, increased the sensitivity of platelets to adenosine 5′-pyrophosphate and collagen in vitro; the same concentration of arginine vasopressin caused a potentiation of the effect of catecholamines on the response of platelets to sodium arachidonate. 4. These results indicate that intraplatelet arginine vasopressin is released during aggregation and suggest that a local release of arginine vasopressin could occur after complete platelet aggregation in vivo.


1988 ◽  
Vol 74 (5) ◽  
pp. 491-497 ◽  
Author(s):  
D. Sils ◽  
S. E. Rodgers ◽  
J. V. Lloyd ◽  
K. M. Wilson ◽  
D. M. Siebert ◽  
...  

1. The aspirin concentrations previously reported to inhibit platelet aggregation in vitro (40–500 μmol/l) are much greater than those required in vivo in man (5 μmol/l). 2. Human platelet-rich plasma was incubated with buffer or various aspirin concentrations at 37°C for up to 4.5 h. Platelet aggregation and thromboxane generation were measured in response to collagen (0.4–6.3 μg/ml) and adenosine 5′-pyrophosphate (0.5–4 μmol/l). 3. The concentration of aspirin needed to inhibit platelet aggregation in response to a critical concentration of aggregating agent (lowest concentration to cause greater than 50% aggregation) was lower than that required for higher concentrations of aggregating agent. 4. With more prolonged incubation times with aspirin, lower concentrations of aspirin inhibited platelet aggregation. 5. Inhibition of platelet aggregation and thromboxane formation by 10 μmol/l aspirin was maximal by 90 min. There was progressive inhibition by 3 μmol/l aspirin during incubation for 270 min. By the end of this time there was also significant inhibition by 1 μmol/l aspirin. 6. The apparent discrepancy between inhibitory aspirin concentrations in vivo and those observed in vitro in previous studies appears to have been resolved by extending the incubation time of platelets with low aspirin concentrations, thus mimicking the conditions in vivo.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2107-2107
Author(s):  
Guangheng Zhu ◽  
Michelle Lee Webster ◽  
Adili Reheman ◽  
Pingguo Chen ◽  
Ebrahim Sayeh ◽  
...  

Abstract Background: Platelets are critical for maintaining hemostasis, but inappropriate platelet activation can lead to pathogenic thrombosis. It has been demonstrated that the platelet integrin αIIbβ3 is essential for platelet aggregation and is also a major target antigen in immune thrombocytopenias (e.g. ITP). Current monoclonal antibodies (mAbs) against this protein complex have been generated using traditional methods involving cross-species immunization (e.g. mouse proteins into rat hosts). These approaches may generate a limited repertoire of anti-β3 mAbs since the antigenicity of the protein and the variety of epitopes targeted are based on amino acid sequence differences between the two species and integrin family members are highly conserved. Additionally, studies in murine models of ITP are hampered by the use of xenogeneic antibodies rather than syngeneic antibodies. Methods: We developed a method to generate mouse anti-mouse β3 integrin mAbs utilising β3 gene deficient mice (β3−/−) immunized with wild-type platelets. To generate antibodies specific to the PSI domain (HPA-1 region) of β3 integrin, β3−/− mice were immunized with the recombinant murine PSI domain of β3 integrin. Platelet binding and specificity were determined by flow cytometry and western blot. In vitro effects on platelet function were measured using aggregometry. Different doses of mAbs (5, 10, and 15 μg/mouse) were injected intravenously to induce thrombocytopenia in vivo. Results: A total of twelve mAbs were generated against native β3 integrin (JAN A1, B1, C1, D1 and DEC A1 and B1, 9D2, M1) or recombinant PSI domain (PSI A1, B1, C1, E1). The mAbs were specific for β3 integrin; no binding was observed using β3−/− platelets. Isotyping showed that DEC A1 and DEC B1 are IgG3, PSI E1 is IgG2b, and all other mAbs are IgG1. The anti-PSI domain mAbs recognized linear epitopes and the anti-native β3 mAbs recognized conformational epitopes. All mAbs, with the exception of JAN A1 and B1, cross-reacted with human platelets. JAN C1, JAN D1, DEC A1, 9D2, M1, and all anti-PSI antibodies inhibited mouse platelet aggregation. These antibodies, except DEC A1, 9D2 and M1, also inhibited human platelet aggregation. One anti-PSI domain antibody (PSI B1), however, directly induced human platelet aggregation in the absence of agonist in platelet rich plasma but not in PIPES buffer. This suggests that PSI B1 may initiate conformational changes in β3 integrin and promote fibrinogen binding. Six anti-β3 mAbs (JAN A1, B1, C1 and D1, 9D2 and M1) induced severe dose-dependent thrombocytopenia in mice, while the anti-PSI domain mAbs induced only a mild decrease in platelet count. Interestingly, the two IgG3 mAbs (DEC A1 and B1) did not induce thrombocytopenia. Conclusion: This approach to generating mouse anti-mouse β3 integrin mAbs using β3−/− mice was successful. Different anti-β3 mAbs had different effects on platelet aggregation, and on the induction of thrombocytopenia. These mAbs may be useful reagents for research in thrombosis and immune thrombocytopenia and as novel anti-thrombotic therapeutics.


1987 ◽  
Author(s):  
C Cordova ◽  
F Violi ◽  
D Praticò ◽  
A Ghiselli ◽  
C Alessandri ◽  
...  

Low doses of aspirin (20 mg/day) were previously reported to be uneffective in preventing platelet aggregation (PA) induced by pairs of aggregating agents such as PAF and adrenalin.This was in part attributed to the inability of such treatment to inhibit lipo oxygenase-dependent PA.The latter can be observed in vitro in"aspl rinated"platelets stimulated with high quantities of aggregating -agents.The aim of this study was to evaluate if the lipooxygenase-dependent PA was influenced by aspirin in a dose-dependent fashion. PA was studied in platelet rich plasma (PRP)(Born's method) by using threshold doses of aggregating agents (TDA) such as PAF(4-75 nM),epinephrine(0.6-2 μM) and collagen(2-4 μg/ml).PA performed in PRP pretrated with 100μM aspirin was fully prevented;in the same samples thromboxane (Tx) A2 evaluated by its metabolite Tx B2 was almost absent.Increasing amount of PAF(20 fold TDA),epinephrine(20 fold TDA) and collagen (36 fold TDA) do aggregate"aspirinated"pla telets;similarly"aspirinated"platelets aggregate when stimulated-with a pair of aggregating agents (TDA of PAF+epinephrine).This phenomenon was not detected if platelets were incubated with higher amounts of aspirin (250-500 μM).The study suggests that aspirin could influence lipooxygenase-dependent PA.This hypothesis is sup ported by a research showing the aspirin inhibits dose-dependently platelet HETE formation.A further study is now in progress to eva luate the influence of high doses of aspirin on cyclooxygenase-i"n dependent PA in vivo.


1977 ◽  
Author(s):  
S. S. Tang ◽  
M. M. Frojmovic

Recently, one member of a new series of compounds was reported as a potent, nontoxic and long lasting antithrombotic agent, based on in vitro and in vivo animal tests (Bristol Labs; Fleming et al (1975), J. Pharmacol. Exp. Ther. 194, 435).We here report on the effects of this compound, 6-methyl-l,2,3,5-tetrahydroimidazo [2,1-b]quinazolin-2-one hydrochloride monohydrate (BL-3459), and its metabol ical ly more stable 6,7-dichloro analogue (BL-4162) , on rabbit and human platelet shape change and aggregation, and compare them with other agents known to affect platelet adenosine 3′:5′-cyclic monophosphate (cAMP). In aggregometer studies with citrated (0.29%) platelet-rich plasma (PRP), both BL-compounds were found to inhibit platelet shape change and aggregation induced by ADP, thrombin, serotonin and adrenaline-serotonin. Typically for human PRP, aggregation induced by 10 μM ADP was inhibited by 90% with 10 μM BL-4162 or 0.1 μM prostaglandin E1 (PGE1), and by 60% with 10 μM BL-3459. In corresponding rabbit PRP tests, 60% inhibition was caused equally by 1 μM BL-3459 or BL-4162, and by 0.05 μM PGE1,Both BL-compounds, like methylxanthines, were found to potentiate the inhibitory effect of PGE1 on platelet aggregation but did not potentiate the action of methylxanthines. Moreover, they both slightly increased the basal level of rabbit cAMP and potentiated the elevation of cAMP by PGE1, These BL-compounds are potent inhibitors of human and rabbit shape change and aggregation and appear to act by a mechanism distinct from that of PGE1.


1981 ◽  
Author(s):  
H A Culliver ◽  
N G Ardlie

The lowest concentrations at which epinephrine and vasopressin have been reported to interact positively in causing platelet aggregation in vitro are at least two orders of magnitude greater than the physiological concentrations of these hormones in blood. The aim of this study was to examine the interaction between several agonists of human platelet aggregation. The aggregating agents used were adenosine diphosphate (ADP), epinephrine, norepinephrine, 5-hydroxytryptamine and vasopressin. Platelet-rich plasma (PRP) was prepared from blood anticoagulated with minimal concentrations of heparin in an attempt to more closely reflect the in vivo situation.Aggregation caused by ADP was potentiated by epinephrine at a concentration exceeding the level obtained in circulating blood. When a third agonist (vasopressin) was used in combination with ADP and epinephrine, aggregation was enhanced at concentrations of vasopressin and epinephrine obtained in blood. When used as a fourth agonist norepinephrine and 5-hydroxytryptamine potentiated aggregation at physiological concentrations. The response to multiple agonists was greater in heparinized PRP than citrated PRP. Hirudin decreased the extent of aggregation in heparinized PRP caused by multiple agonists suggesting that thrombin may be involved.Since the concentrations of combined agonists required to induce in vitro platelet aggregation can be obtained in circulating blood these findings may explain why platelet activation occurs in certain pathological states.


2011 ◽  
Vol 105 (04) ◽  
pp. 696-705 ◽  
Author(s):  
Sebastien Roy ◽  
Melanie Lavisse ◽  
Denis Brasseur ◽  
Joe Schofield ◽  
Nathalie Delesque Touchard ◽  
...  

SummaryPharmacokinetic analyses of clopidogrel are hampered by the existence of multiple active metabolite isomers (H1 to H4) and their instability in blood. We sought to retest the pharmacodynamic activities of the four individual active metabolite isomers in vitro, with the ultimate aim of determining the isomers responsible for clopidogrel activity in vivo. In vitro activity was evaluated by measuring binding of [33P]-2-methylthio-ADP on P2Y12-expressing Chinese hamster ovary (CHO) cells and human platelets in platelet-rich plasma (PRP). A stereoselective method that used reverse-phase ultra high-performance liquid chromatography (UHPLC) and tandem mass spectrometry (MS) was developed to measure individual concentrations of the stable 3’-methoxyacetophe-none (MP) derivatives of H1–H4. The new method was used to analyze plasma samples from clopidogrel-treated subjects enrolled in a phase I clinical trial. In vitro binding assays confirmed the previously observed biological activity of H4 (IC50: CHO-P2Y12: 0.12 μM; PRP: 0.97 μM) and inactivity of H3, and demonstrated that H1 was also inactive. Furthermore, H2 demonstrated approximately half of the biological activity in vitro compared with H4. Optimisation of UHPLC conditions and MS collision parameters allowed the resolution and detection of the four derivatised active metabolite isomers (MP-H1 to MP-H4). The stereoselective assay was extensively validated, and was accurate and precise over the concentration range 0.5–250 ng/ml. Only MP-H3 and MP-H4 were quantifiable in incurred clinical samples. Based on in vitro pharmacodynamic data and found concentrations, the active metabolite isomer H4 is the only diastereoisomer of clinical relevance for documenting the pharmacokinetic profile of the active metabolite of clopidogrel.


Blood ◽  
1981 ◽  
Vol 58 (5) ◽  
pp. 1027-1031 ◽  
Author(s):  
AJ Marcus ◽  
LB Safier ◽  
HL Ullman ◽  
KT Wong ◽  
MJ Broekman ◽  
...  

Abstract AGEPC (PAF), at 1.9 x 10(-8) M or higher, induced concentration- dependent aggregation and release in human platelet-rich plasma. Comparative studies with arachidonate, collagen, ionophore, and ADP suggested that AGEPC was a strong stimulus for platelet aggregation and probably a moderate agonist for release, as well as a relatively weak inducer of TXA2 production. The initial phase of AGEPC-induced aggregation was independent of ADP release and TXA2 formation, since it was not inhibited by ASA, apyrase, or CP/CPK. Whereas irreversible aggregation always required ADP release, TXA2 formation was not essential in each instance. Thus, in several experiments, full aggregation responses took place in AGEPC-stimulated platelets that had been pretreated with ASA. AGEPC-induced release of 5-HT, beta - thromboglobulin and PF-4 occurred in parallel and were inhibited by both apyrase and ASA. Washed human platelets did not respond to exogenous AGEPC in the absence of ADP and did not appear to generate significant quantities of AGEPC upon stimulation with thrombin or ionophore.


1988 ◽  
Vol 59 (02) ◽  
pp. 164-170 ◽  
Author(s):  
N Lad ◽  
A C Honey ◽  
D O Lunt ◽  
R F G Booth ◽  
J Westwick ◽  
...  

SummarySC 38249 ((RS)-l-(2,3-bis-[(4-methoxyphenyl)methoxy] propyl)-lH-imidazole) caused dose-related inhibition of collagen- induced thromboxane A2 formation in human platelet rich plasma (IC50: 9.9 ± 1.0 μM) accompanied by a dose-dependent increase in plasma PGE2. Broad inhibitory activity was evident against human platelet aggregatory and secretory responses in vitro.IC50 values of 11.9 ± 1.9 μM (0.64 mM arachidonic acid), 18.3 ± 3.8 μM (0.5 μg ml−-1collagen) and 37.6 ± 6.1 μM (25 nM Paf-acether) were obtained against maximum increase in PRP light transmission achieved by each agonist. Although less potent, SC 38249 retained significant inhibitory activity against PRP responses induced by a higher (3.0 μg ml−-1) concentration of collagen (IC50: 272.5 ± 24.6 μM), and against Paf-acether-induced responses in PRP pre-treated with 10 μM indomethacin (I.C.50: 192.0 ± 16.1 μM).Experimental animal studies confirmed the in vitroanti-aggregatory efficacy of SC 38249, since significant inhibitory activity was observed against Paf-acether and ADP-induced responses in dog PRP ex vivo,anti-Forssman antibody-induced thrombocytopoenia in anaesthetized guinea pigs, and collagen-induced intravascular aggregation in anaesthetized rabbits. Thus, SC 38249 is a novel thromboxane synthase inhibitor which possesses interesting anti-aggregatory properties which cannot wholly be attributed to prevention of platelet thromboxane A2 formation.


Sign in / Sign up

Export Citation Format

Share Document