Inhibition of platelet aggregation and thromboxane production by low concentrations of aspirin in vitro

1988 ◽  
Vol 74 (5) ◽  
pp. 491-497 ◽  
Author(s):  
D. Sils ◽  
S. E. Rodgers ◽  
J. V. Lloyd ◽  
K. M. Wilson ◽  
D. M. Siebert ◽  
...  

1. The aspirin concentrations previously reported to inhibit platelet aggregation in vitro (40–500 μmol/l) are much greater than those required in vivo in man (5 μmol/l). 2. Human platelet-rich plasma was incubated with buffer or various aspirin concentrations at 37°C for up to 4.5 h. Platelet aggregation and thromboxane generation were measured in response to collagen (0.4–6.3 μg/ml) and adenosine 5′-pyrophosphate (0.5–4 μmol/l). 3. The concentration of aspirin needed to inhibit platelet aggregation in response to a critical concentration of aggregating agent (lowest concentration to cause greater than 50% aggregation) was lower than that required for higher concentrations of aggregating agent. 4. With more prolonged incubation times with aspirin, lower concentrations of aspirin inhibited platelet aggregation. 5. Inhibition of platelet aggregation and thromboxane formation by 10 μmol/l aspirin was maximal by 90 min. There was progressive inhibition by 3 μmol/l aspirin during incubation for 270 min. By the end of this time there was also significant inhibition by 1 μmol/l aspirin. 6. The apparent discrepancy between inhibitory aspirin concentrations in vivo and those observed in vitro in previous studies appears to have been resolved by extending the incubation time of platelets with low aspirin concentrations, thus mimicking the conditions in vivo.

1987 ◽  
Author(s):  
E Tremoli ◽  
P Maderna ◽  
S Colli ◽  
L Mannucci ◽  
C R Sirtori ◽  
...  

To evaluate whether the activity of Iloprost, a chemically stable prostacyclin analog, on platelet aggregation could be potentiated by aspirin (ASA), in vitro and ex vivo studies in human volunteers were performed. In vitro studies were carried out in human platelet rich plasma (PRP) incubated with different concentrations of ASA (25-150 μM). For ex vivo studies Iloprost (0.5 ng.Kg−1.min−1 for 30 min) was given intravenously to healthy volunteers. After 20 hour wash out a single 50 mg ASA dose was given to the same subjects. Two hours after ASA intake, a second infusion of Iloprost was carried out. Blood was collected at appropriate time intervals thereafter. Platelet aggregation and thromboxane B2 (TXB2) formation were determined in collagen stimulated PRP. ASA, in vitro , dose dependently reduced the concentrations oF Iloprost required to achieve 50% inhibition of platelet aggregation (IC50) in PRP stimulated by 1 g/ml collagen. Also, the IC50S for Iloprost were significantly reduced (p<0.01) in PRP of subjects who ingested ASA two hours before blood collection. Iloprost infusion (0.5 ng.Kg−1.min−1 for 30 min) only minimally affected the concentrations of collagen eliciting 50% aggregation (AC50) and was ineffective on TXB2 synthesis. ASA, administered after a 20 hour wash out period did not significantly affect the AC s for collagen, whereas it inhibited TXB2 synthesis by more than 50%. The mean AC50 for collagen, evaluated at the end of Iloprost infusion in PRP of subjects who previously ingested ASA, was signicantly greater than that evaluated after the two single treatments. No significant changes in hemodynamic and ECG parameters were detected during the study. These findings, indicating an in vivo potentiating effect of ASA on the antiaggregatory activity of Iloprost, observed at doses of Iloprost with no effect on hemodynamic parameters, may be of relevance for the design of treatment schedules aimed to the selective inhibition of platelet aggregation.


1977 ◽  
Author(s):  
W. H. E. Roschlau

Brinolase (fibrinolytic enzyme from Aspergillus oryzae) was observed to possess significant platelet aggregation inhibitory properties during and after thrombolytic therapeutic use. These platelet effects were found in vitro to be caused in part by intermediate products of fibrinogen digestion, namely low-molecular-weight peptides of approx. MW 2500. Human fibrinogen peptides were isolated, purified, and shown to have high inhibitory activity in platelet-rich plasma. Quantitative comparisons of attainable platelet inhibition in vitro and observed responses in vivo during administration of equivalent enzyme doses, however, suggested that total available fibrinogen, even if it were entirely converted to degradation products (which it is not), would be insufficient to account for observed platelet effects of brinolase therapy.Human serum albumin is also readily degraded by brinolase. Albumin degradation products were prepared in vitro by optimal incubation with the enzyme. Dose-response curves of inhibition of platelet aggregation were obtained with lyophilized peptides in platelet-rich plasma in vitro, and significant inhibition of platelet aggregation was observed in vivo following infusion of albumin degradation products into rabbits. The enzyme doses and amounts of substrates employed in all experiments were equivalent to the conditions of therapeutic fibrinolysis.Thus, albumin degradation products are considered to contribute a significant, if not the major, portion of platelet-active intermediates during clinical brinolase therapy. Albumin cleavage, which is unique to brinolase amongst clinical fibrinolytic enzymes, was shown to have biological effects of its own, but it may also serve to protect coagulation proteins from enzymatic destruction through competition for the enzyme during systemic brinolase therapy.


1975 ◽  
Author(s):  
D. Loew ◽  
H. Vinazzer

There is general agreement that ASA inhibits platelet aggregation, adhesion and release reactions when given orally. In the present study, 10 individuals received a single intravenous dose of 500 mg ASA to examine the kinetics of the influence on platelet functions. Blood was drawn prior to ASA and at intervals between 2 minutes and 72 hours after injection.Collagen induced platelet aggregation as well as PF 3 and PF 4 release started to decrease 2 minutes after ASA and reached a minimum after 1 hour. A full ASA effect could still be observed after 24 hours though ASA had disappeared from plasma by that time. Simultaneously, in-vitro examinations with ASA were carried out. ASA was added to fresh platelet rich plasma in a concentration correspondent to the in-vivo dose. The inhibition of platelet aggregation and PF 4 release had a lag time of 1 hour and was considerably less distinct than in vivo. No inhibition of PF 3 release could be observed. The results demonstrate a rapid action of ASA when given intravenously while the in-vitro effect is much less distinct. A probable explanation is a direct effect of ASA on the platelet membrane. The enhancement in vivo is supposed to be caused by splitting of the acetylic group from ASA.


1977 ◽  
Author(s):  
A. C. Carvalho ◽  
R. W. Colman ◽  
R. Vaillancourt ◽  
R. Cabrai ◽  
R. Anaya

Diazepam (Valium) is one of the most prescribed medications in the world. Patients on Diazepam may need platelet function evaluation. Therefore, a study of its effect on both in vivo and in vitro platelet function was undertaken in 8 normal volunteers. Diazepam (10–40μg/ml) was incubated in vitro with platelet rich plasma (250,000/μl) at intervals of 15, 30, 60, 120, and 240 minutes followed by determination of platelet aggregation and 14C-serotonin release. Fifty percent inhibition of platelet aggregation and release by Diazepam was obtained at 1 hr with epinephrine (p<0.01) and at 2 hrs with ADP (p<0.01), but no significant effect was noted with collagen. The Diazepam inhibitory effect on platelet aggregation and release was overcome by high concentrations of aggregating agents, suggesting that its primary effect is not mediated by inhibition of prostaglandin synthesis.Following oral ingestion of 5mg of Diazepam, platelet aggregation and 14C-serotonin release were determined serially (2, 4, 8, 12, 24, and 48 hours) in the 8 normal subjects. After 8 hours, Diazepam inhibited ADP-induced aggregation and release by 39% (p<0.01) and epinephrine by 50% (p<0.01). No significant inhibition of collagen was observed. Forty-eight hours after Diazepam intake, platelet function returned to normal in all subjects.Our data show that Diazepam impairs both platelet aggregation and release in vitro and in vivo. Although the effect of Diazepam on in vivo hemostasis is still uncertain, our results suggest caution in the interpretation of platelet function testing in patients on this drug.


1987 ◽  
Author(s):  
R Altman ◽  
A Scazziota ◽  
S Windor ◽  
C A Dujovne

Platelet activation in vivo occurs by the action of several stimuli. It is generally agreed that actives products of arachidonic acid derived via the cyclooxy-genase pathway can stimulate platelet aggregation. ASA decrease thromboxane A2 generation and thereby inhibit platelet aggregation produced by AA and, partially, by others agonists. Nevertheless, the antiaggregating effect of ASA can be overcome by the conjointly activity of arachidonic acid(AA) and platelet activating factor (PAF). The inhibition of this cooperative aggregating effect can be important in platelet function suppressive therapy. The effect of DIL was tested in this sys tern. DIL was added in vitro to platelet rich plasma oS talned from volunteers before and after ASA(100mg/dayT intake for 7 days. DIL (2ug/ml) inhibited 50% platelet aggregation induced by AA (0.75mM) in non aspiri-nated volunteers. At even lower concentrations of DIL (0.4-lug/ml) an inhibition of aggregation induced by 300nM of PAF was also observed. After ASA, no aggregation by AA, only a first wave followed by disaggregation when PAF (30nM) was used and a full response when this pair of agonists were added together was obtained. DIL (0.lug/ml) added in vitro, produced significant inhibition of the synergism.The effect in vivo of DIL plus low dose of ASA was also explored. In vivo administration of therapeutic dose of DIL (60mg T.I.D.) and low dose of ASA (75-100 mg/day), prevented the synergistic activity of AA plus PAF on platelet aggregation. In conclusion, DIL may enhance the effectiveness of low dose of ASA in the prevention of arterial thromboembolism.


1987 ◽  
Author(s):  
R De Caterina ◽  
D Giannessi ◽  
W Bernini ◽  
A Mazzone

Organic nitrates (nitroglycerin, isosorbide dinitrate) are inhibitors of platelet function more effective in vivo than in vitro (Am J Cardiol 1984; 53:1683), the in vivo effect requiring concentrations 10-100 times lower than in vitro. We have previously excluded that such difference is due to elicitation by nitrates of prostacyclin synthesis in human endothelial cells or vascular fragments (Circulation 1985; 71:176). In the present study we evaluated alternative explanations: that the difference is due (1) to generation of more active drug metabolites; (2) to synergism between nitrates and prostacyclin in the inhibition of platelet function. Isosorbide dinitrate (ISDN) and its two main in vivo metabolites, isosorbide-2-mononitrate (IS-2-MN) and isosorbide-5-mononitrate (IS-5-MN), were compared in their ability to inhibit platelet aggregation and thromboxane (TX) B2 formation (RIA) in respone to threshold doses of ADP, adrenaline, collagen, arachidonic acid and thrombin in citrated platelet-rich plasma. The same tests were performed in 10 healthy volunteers before, during (at 5, 15 and 30 min) and after infusion of the three drugs at 8 mg/h for 30 min in 3 different days. Finally, the concentration of prostacyclin (and its stable analogue Iloprost) added in vitro to platelets, and required to inhibit platelet aggregation by 50% (IC50) after 5 min pre-incubation of platelets with nitrates was determined. In vitro incubation of platelets with IS-2-MN resulted in greater inhibition of both aggregation and TX formation (by ADP and adrenaline) than with ISDN and IS-5-MN. At 10−7M, only IS-2-MN significantly inhibited aggregation (−12%, P< 0.05) and TX formation (from 9.2±1.8 to 5.9± 0.6 ng/ml) by ADP, while minimum effective concentrations were 10−7M for ISDN and 10−7m for IS-5-MN. These in vitro differences are unlikely to be the explanation of in vivo findings, since IS-2-MN, ISDN and IS-5-MN were equipotent when administered in vivo (complete abolition of secondary wave after ADP and adrenaline at 30 min of infusion). At supra-threshold doses of all the aggregating agents, all three drugs, at 10−7M, decreased IC50 for prostacyclin from 2.9± 1.3 to 0.32± 0.18 nM (P< 0.01). Synergim with prostacyclin is most likely to account, at least partially, for in vivo antiplatelet effects by organic nitrates.


1973 ◽  
Vol 29 (02) ◽  
pp. 490-498 ◽  
Author(s):  
Hiroh Yamazaki ◽  
Itsuro Kobayashi ◽  
Tadahiro Sano ◽  
Takio Shimamoto

SummaryThe authors previously reported a transient decrease in adhesive platelet count and an enhancement of blood coagulability after administration of a small amount of adrenaline (0.1-1 µg per Kg, i. v.) in man and rabbit. In such circumstances, the sensitivity of platelets to aggregation induced by ADP was studied by an optical density method. Five minutes after i. v. injection of 1 µg per Kg of adrenaline in 10 rabbits, intensity of platelet aggregation increased to 115.1 ± 4.9% (mean ± S. E.) by 10∼5 molar, 121.8 ± 7.8% by 3 × 10-6 molar and 129.4 ± 12.8% of the value before the injection by 10”6 molar ADP. The difference was statistically significant (P<0.01-0.05). The above change was not observed in each group of rabbits injected with saline, 1 µg per Kg of 1-noradrenaline or 0.1 and 10 µg per Kg of adrenaline. Also, it was prevented by oral administration of 10 mg per Kg of phenoxybenzamine or propranolol or aspirin or pyridinolcarbamate 3 hours before the challenge. On the other hand, the enhancement of ADP-induced platelet aggregation was not observed in vitro, when 10-5 or 3 × 10-6 molar and 129.4 ± 12.8% of the value before 10∼6 molar ADP was added to citrated platelet rich plasma (CPRP) of rabbit after incubation at 37°C for 30 second with 0.01, 0.1, 1, 10 or 100 µg per ml of adrenaline or noradrenaline. These results suggest an important interaction between endothelial surface and platelets in connection with the enhancement of ADP-induced platelet aggregation by adrenaline in vivo.


1973 ◽  
Vol 30 (02) ◽  
pp. 315-326
Author(s):  
J. Heinz Joist ◽  
Jean-Pierre Cazenave ◽  
J. Fraser Mustard

SummarySodium pentobarbital (SPB) and three other barbituric acid derivatives were found to inhibit platelet function in vitro. SPB had no effect on the primary response to ADP of platelets in platelet-rich plasma (PRP) or washed platelets but inhibited secondary aggregation induced by ADP in human PRP. The drug inhibited both phases of aggregation induced by epinephrine. SPB suppressed aggregation and the release reaction induced by collagen or low concentrations of thrombin, and platelet adherence to collagen-coated glass tubes. The inhibition by SPB of platelet aggregation was readily reversible and isotopically labeled SPB did not become firmly bound to platelets. No inhibitory effect on platelet aggregation induced by ADP, collagen, or thrombin could be detected in PRP obtained from rabbits after induction of SPB-anesthesia.


1983 ◽  
Vol 50 (04) ◽  
pp. 852-856 ◽  
Author(s):  
P Gresele ◽  
C Zoja ◽  
H Deckmyn ◽  
J Arnout ◽  
J Vermylen ◽  
...  

SummaryDipyridamole possesses antithrombotic properties in the animal and in man but it does not inhibit platelet aggregation in plasma. We evaluated the effect of dipyridamole ex vivo and in vitro on platelet aggregation induced by collagen and adenosine- 5’-diphosphate (ADP) in human whole blood with an impedance aggregometer. Two hundred mg dipyridamole induced a significant inhibition of both ADP- and collagen-induced aggregation in human blood samples taken 2 hr after oral drug intake. Administration of the drug for four days, 400 mg/day, further increased the antiplatelet effect. A significant negative correlation was found between collagen-induced platelet aggregation in whole blood and dipyridamole levels in plasma (p <0.001). A statistically significant inhibition of both collagen (p <0.0025) and ADP-induced (p <0.005) platelet aggregation was also obtained by incubating whole blood in vitro for 2 min at 37° C with dipyridamole (3.9 μM). No such effects were seen in platelet-rich plasma, even after enrichment with leukocytes. Low-dose adenosine enhanced in vitro inhibition in whole blood.Our results demonstrate that dipyridamole impedes platelet aggregation in whole blood by an interaction with red blood cells, probably involving adenosine.


2018 ◽  
Vol 1 (1) ◽  
pp. 01-03
Author(s):  
Mark I. M. Noble

Over many years, laboratory testing of platelet aggregability have been carried out in attempts to develop drugs that would prevent thrombosis in arteries. The problems encountered included the question of methodology. Blood samples have to be anticoagulated in order to study the platelets. Anti-coagulation with citrate and tests on derived platelet rich plasma did not correlate at all well with thrombus growth in the stenosed coronary arteries of experimental animals and citrate removes the calcium ions which are vital for platelet function. Anticoagulation with heparin also interfered with platelet function, so that now, hirudins are the preferred anticoagulant. However it was observed that if, instead of stimulating platelet aggregation with adrenaline or ADP, serotonin was applied to the preparation, very little aggregation took place in spite of serotonin 5HT2A antagonists being the most potent inhibitors of thrombus growth in experimental animals. Another indicator that primary platelet agggregation is not a predictor of in vivo efficacy was the finding that 5HT2A antagonism inhibited aggregate growth. In a stenosed artery the platelets are activated by increased shear stress and blood turbulence with release of platelet serotonin causing positive feedback activation of more platelets. At present, there does not seem to be a bench in vitro test that accurately predicts in vivo efficacy in stenosed artery occlusive thrombosis.


Sign in / Sign up

Export Citation Format

Share Document