Development of MDL 28,050, a Small Stable Antithrombin Agent Based on a Functional Domain of the Leech Protein, Hirudin

1990 ◽  
Vol 63 (02) ◽  
pp. 208-214 ◽  
Author(s):  
John L Krstenansky ◽  
Robert J Broersma ◽  
Thomas J Owen ◽  
Marguerite H Payne ◽  
Mark T Yates ◽  
...  

SummaryMDL 28,050 is a decapeptide antithrombin agent that inhibits a-thrombin-induced fibrin clot formation by binding to a non-catalytic site on α-thromhin. It is the result of chemical and structural optimization of a functional domain of the leech anticoagulant, hirudin. In contrast to the contention that the polyanionic nature of this C-terminal functional domain governs its interaction with α-thrombin, systematic study of this region has shown the importance of the lipophilic residues for providing the functionality necessary foi potent binding to a-thrombin. The development of MDL 28,050 and other effective antithrombin agents are outlined through the description of the structure-activity relationships (SAR) for these peptides. These peptides are effective in a variety of in vitro and in vivo models of thrombosis.

2021 ◽  
Vol 27 ◽  
pp. 107602962110185
Author(s):  
Reheman Adili ◽  
Madeline Jackson ◽  
Livia Stanger ◽  
Xiangrong Dai ◽  
Mandy Li ◽  
...  

Uncontrolled bleeding associated with trauma and surgery is the leading cause of preventable death. Batroxobin, a snake venom-derived thrombin-like serine protease, has been shown to clot fibrinogen by cleaving fibrinopeptide A in a manner distinctly different from thrombin, even in the presence of heparin. The biochemical properties of batroxobin and its effect on coagulation have been well characterized in vitro. However, the efficacy of batroxobin on hemostatic clot formation in vivo is not well studied due to the lack of reliable in vivo hemostasis models. Here, we studied the efficacy of batroxobin and slounase, a batroxobin containing activated factor X, on hemostatic clot composition and bleeding using intravital microcopy laser ablation hemostasis models in micro and macro vessels and liver puncture hemostasis models in normal and heparin-induced hypocoagulant mice. We found that prophylactic treatment in wild-type mice with batroxobin, slounase and activated factor X significantly enhanced platelet-rich fibrin clot formation following vascular injury. In heparin-treated mice, batroxobin treatment resulted in detectable fibrin formation and a modest increase in hemostatic clot size, while activated factor X had no effect. In contrast, slounase treatment significantly enhanced both platelet recruitment and fibrin formation, forming a stable clot and shortening bleeding time and blood loss in wild-type and heparin-treated hypocoagulant mice. Our data demonstrate that, while batroxobin enhances fibrin formation, slounase was able to enhance hemostasis in normal mice and restore hemostasis in hypocoagulant conditions via the enhancement of fibrin formation and platelet activation, indicating that slounase is more effective in controlling hemorrhage.


Author(s):  
Sue-Mae Saw ◽  
Anand K. Ramasubramanian ◽  
Melinda Simon ◽  
Sang-Joon John Lee

Abstract Hemodynamics plays an important role in the formation of blood clots, for which changes in hydrodynamic stresses and transport phenomena can initiate or inhibit the clotting process. Fibrin, which is converted from fibrinogen in blood plasma, plays a dominant role in structural mechanics of a clot. Clot analogs are conventionally fabricated in a static in vitro environment whereas clot formation in vivo occurs in the presence of dynamic blood flow. In this paper we demonstrate an ability to produce clot analogs at the boundary between active co-flow fluid streams. The time evolution of clot formation in microchannel flow was investigated using fluorescence imaging of fibrin clots at one-minute intervals. Time-tracking of skewness and kurtosis of fluorescence intensity data was conducted to monitor shape and density distribution changes in the clot. Soft lithography and casting techniques were used to fabricate a polydimethylsiloxane (PDMS) microfluidic device which consisted of a Y-shaped microchannel 300 μm wide × 12 μm deep × 10 mm long with two inlets and a single outlet. The first inlet introduced fresh frozen plasma (FFP), which contains fibrinogen and plasma proteins. The second inlet introduced thrombin, which initiated the conversion of fibrinogen to fibrin. Clot analogs were formed at the interface between these two parallel streams. Flow was driven by withdrawal of a syringe pump at flow rates of 50 nL/min and 100 nL/min. Clots that are formed in such an engineered device provide opportunities to recapitulate the flow rates and concentrations of reagents, to mimic in vivo scenarios in which clot density and composition gradients depend on flow conditions.


2014 ◽  
Vol 111 (03) ◽  
pp. 447-457 ◽  
Author(s):  
Marisa Ninivaggi ◽  
Gerhardus Kuiper ◽  
Marco Marcus ◽  
Hugo ten Cate ◽  
Marcus Lancé ◽  
...  

SummaryBlood dilution after transfusion fluids leads to diminished coagulant activity monitored by rotational thromboelastometry, assessing elastic fibrin clot formation, or by thrombin generation testing. We aimed to determine the contributions of blood cells (platelets, red blood cells) and plasma factors (fibrinogen, prothrombin complex concentrate) to fibrin clot formation under conditions of haemodilution in vitro or in vivo. Whole blood or plasma diluted in vitro was supplemented with platelets, red cells, fibrinogen or prothrombin complex concentrate (PCC). Thromboelastometry was measured in whole blood as well as plasma; thrombin generation was determined in parallel. Similar tests were performed with blood from 48 patients, obtained before and after massive fluid infusion during cardiothoracic surgery. Addition of platelets or fibrinogen, in additive and independent ways, reversed the impaired fibrin clot formation (thromboelastometry) in diluted whole blood. In contrast, supplementation of red blood cells or prothrombin complex concentrate was ineffective. Platelets and fibrinogen independently restored clot formation in diluted plasma, resulting in thromboelastometry curves approaching those in whole blood. In whole blood from patients undergoing dilution during surgery, elastic clot formation was determined by both the platelet count and the fibrinogen level. Thrombin generation in diluted (patient) plasma was not changed by fibrinogen, but improved markedly by prothrombin complex concentrate. In conclusion, in dilutional coagulopathy, platelets and fibrinogen, but not red blood cells or vitamin K-dependent coagulation factors, independently determine thromboelastometry parameters measured in whole blood and plasma. Clinical decisions for transfusion based on thromboelastometry should take into account the platelet concentration.


2014 ◽  
Vol 60 (4) ◽  
pp. 493-502
Author(s):  
I.A. Shcherbina ◽  
E.N. Lipets ◽  
A.A. Abaeva ◽  
A.N. Balandina ◽  
F.I. Ataullakhanov

In this study we have investigated the process of spatial fibrin clot formation in non-steered platelet-free plasma at the temperatures from 20°C to 43°C using thrombodynamics – the novel in vitro hemostasis assay, which imitates the process of hemostatic clot growth in vivo. During data processing the following parameters were calculated: initial (V i ) and stationary (V st ) rates of clot growth which characterize initiation and propagation phases of clotting process, and clot size on the 30 th minute. The temperature dependence of extrinsic and intrinsic tenase activities, which determine values of the initial and stationary clot growth rates, respectively, have been also measured. It was established that the temperature lowering from 37°C to 24°C extends mainly on the initiation phase of clot growth, while the stationary rate of clot growth changes insignificantly. Meanwhile none of the thrombodynamics parameters shows the dramatic change of plasma coagulation system condition at the temperature of 24°C (acute hypothermia). Using the thrombodynamics assay an assumption, that the temperature lowering does not change the state of plasma hemostasis system significantly has been confirmed.


1993 ◽  
Vol 70 (02) ◽  
pp. 301-306 ◽  
Author(s):  
Linda A Robbie ◽  
Nuala A Booth ◽  
Alison M Croll ◽  
Bruce Bennett

SummaryThe relative importance of the two major inhibitors of fibrinolysis, α2-antiplasmin (α2-AP) and plasminogen activator inhibitor (PAI-1), were investigated using a simple microtitre plate system to study fibrin clot lysis in vitro. Cross-linked fibrin clots contained plasminogen and tissue plasminogen activator (t-PA) at concentrations close to physiological. Purified α2-AP and PAI-1 caused dose-dependent inhibition. All the inhibition due to normal plasma, either platelet-rich or poor, was neutralised only by antibodies to α2-AP. Isolated platelets, at a final concentration similar to that in blood, 2.5 × 108/ml, markedly inhibited clot lysis. This inhibition was neutralised only by antibodies to PAI-1. At the normal circulating ratio of plasma to platelets, α2-AP was the dominant inhibitor. When the platelet:plasma ratio was raised some 20-fold, platelet PAI-1 provided a significant contribution. High local concentrations of PAI-1 do occur in thrombi in vivo, indicating a role for PAI-1, complementary to that of α2-AP, in such situations.


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2019 ◽  
Vol 26 (16) ◽  
pp. 2974-2986 ◽  
Author(s):  
Kwang-sun Kim

Vectors are living organisms that transmit infectious diseases from an infected animal to humans or another animal. Biological vectors such as mosquitoes, ticks, and sand flies carry pathogens that multiply within their bodies prior to delivery to a new host. The increased prevalence of Vector-Borne Diseases (VBDs) such as Aedes-borne dengue, Chikungunya (CHIKV), Zika (ZIKV), malaria, Tick-Borne Disease (TBD), and scrub typhus has a huge impact on the health of both humans and livestock worldwide. In particular, zoonotic diseases transmitted by mosquitoes and ticks place a considerable burden on public health. Vaccines, drugs, and vector control methods have been developed to prevent and treat VBDs and have prevented millions of deaths. However, development of such strategies is falling behind the rapid emergence of VBDs. Therefore, a comprehensive approach to fighting VBDs must be considered immediately. In this review, I focus on the challenges posed by emerging outbreaks of VBDs and discuss available drugs and vaccines designed to overcome this burden. Research into promising drugs needs to be upgraded and fast-tracked, and novel drugs or vaccines being tested in in vitro and in vivo models need to be moved into human clinical trials. Active preventive tactics, as well as new and upgraded diagnostics, surveillance, treatments, and vaccination strategies, need to be monitored constantly if we are to manage VBDs of medical importance.


2020 ◽  
Vol 27 (1) ◽  
pp. 54-77 ◽  
Author(s):  
Bogdan Bumbăcilă ◽  
Mihai V. Putz

Pesticides are used today on a planetary-wide scale. The rising need for substances with this biological activity due to an increasing consumption of agricultural and animal products and to the development of urban areas makes the chemical industry to constantly investigate new molecules or to improve the physicochemical characteristics, increase the biological activities and improve the toxicity profiles of the already known ones. Molecular databases are increasingly accessible for in vitro and in vivo bioavailability studies. In this context, structure-activity studies, by their in silico - in cerebro methods, are used to precede in vitro and in vivo studies in plants and experimental animals because they can indicate trends by statistical methods or biological activity models expressed as mathematical equations or graphical correlations, so a direction of study can be developed or another can be abandoned, saving financial resources, time and laboratory animals. Following this line of research the present paper reviews the Structure-Activity Relationship (SAR) studies and proposes a correlation between a topological connectivity index and the biological activity or toxicity made as a result of a study performed on 11 molecules of organophosphate compounds, randomly chosen, with a basic structure including a Phosphorus atom double bounded to an Oxygen atom or to a Sulfur one and having three other simple covalent bonds with two alkoxy (-methoxy or -ethoxy) groups and to another functional group different from the alkoxy groups. The molecules were packed on a cubic structure consisting of three adjacent cubes, respecting a principle of topological efficiency, that of occupying a minimal space in that cubic structure, a method that was called the Clef Method. The central topological index selected for correlation was the Wiener index, since it was possible this way to discuss different adjacencies between the nodes in the graphs corresponding to the organophosphate compounds molecules packed on the cubic structure; accordingly, &quot;three dimensional&quot; variants of these connectivity indices could be considered and further used for studying the qualitative-quantitative relationships for the specific molecule-enzyme interaction complexes, including correlation between the Wiener weights (nodal specific contributions to the total Wiener index of the molecular graph) and the biochemical reactivity of some of the atoms. Finally, when passing from SAR to Q(uantitative)-SAR studies, especially by the present advanced method of the cubic molecule (Clef Method) and its good assessment of the (neuro)toxicity of the studied molecules and of their inhibitory effect on the target enzyme - acetylcholinesterase, it can be seen that a predictability of the toxicity and activity of different analogue compounds can be ensured, facilitating the in vivo experiments or improving the usage of pesticides.


Sign in / Sign up

Export Citation Format

Share Document