scholarly journals Continuous Registration of Thrombin Generation in Plasma, Its Use for the Determination of the Thrombin Potential

1993 ◽  
Vol 70 (04) ◽  
pp. 617-624 ◽  
Author(s):  
H C Hemker ◽  
S Wielders ◽  
H Kessels ◽  
S Béguin

SummaryA method is described by which the time-course of thrombin generation in plasma can be obtained from a continuous optical density recording of p-nitroaniline (pNA) production in a 2:3 diluted plasma. A chromogenic substrate, methylmalonyl-methylanalyl-arginyl-pNA (SQ68), is used that is specifically split by thrombin but at a low rate. The thrombin that appears and disappears in the plasma does not split more than 5% of the substrate added, so the rate of substrate conversion is in good approximation proportional to the amidolytic activity in the plasma over the entire period of thrombin generation. The course of the enzyme concentration can be calculated from the amidolytic activity curve. It is shown that the thrombin generation curves obtained in this way are essentially identical to those obtained via the classical subsampling method.The presence of SQ 68 influences the amount of free thrombin that appears in plasma because it competitively inhibits the inactivation of thrombin by AT III and α2 macroglobulin. The inhibition of the thrombin peak by heparin, relative to an uninhibited control, remains unaltered by the presence of the substrate.From the course of thrombin activity and the prevailing decay constants, the course of prothrombin conversion velocity can be calculated. Prothrombin conversion was seen to be inhibited at high (>500 μM) substrate concentrations only, and experimental conditions are found under which the inhibition of the clotting process by the substrate is negligibleThe amidolytic activity is the sum of the activities of free thrombin and of the α2 macroglobulin-thrombin complex formed. Via a mathematical procedure the amount of SQ 68 that has been split by thrombin alone and not by the a2 macroglobulin-thrombin complex, can be derived from the course of the optical density.The total amount of SQ 68 eventually split by thrombin alone is proportional to the surface under the thrombin generation curve, i. e. to the time-integral of free thrombin. This value, that we call the thrombin potential (TP), directly indicates how much of any physiological substrate can potentially be split by the thrombin being generated in the plasma.

1986 ◽  
Vol 56 (01) ◽  
pp. 009-017 ◽  
Author(s):  
H C Hemker ◽  
G M Willems ◽  
S Béguin

SummaryA method is described that, on the basis of the time course of amidolytic activity after the triggering of thrombin generation in normal plasma, allows the calculation of the velocity of prothrombin conversion independent of thrombin inactivating processes.It is shown how the reaction constants for the α2M-dependent and the α2M-independent thrombin inactivation processes can be obtained in a sample of whole plasma.The method is verified by demonstrating that the experimentally observed time courses of residual prothrombin and of α2M-thrombin complex coincide with those calculated from the time course of amidolytic activity, and by showing that the course of prothrombin conversion in plasma without α2-macroglobulin or AT III is adequately described if the α2M or AT Ill-dependent breakdown constants are taken zero in the calculations.It appears that the inactivation of thrombin, endogenously generated in whole plasma, is about half as fast as that of exogenous thrombin added to the plasma.A computer program is presented that carries out the relevant calculations.


2016 ◽  
Author(s):  
Wylie Stroberg ◽  
Santiago Schnell

AbstractThe conditions under which the Michaelis–Menten equation accurately captures the steady-state kinetics of a simple enzyme-catalyzed reaction is contrasted with the conditions under which the same equation can be used to estimate parameters, KM and V, from progress curve data. Validity of the underlying assumptions leading to the Michaelis–Menten equation are shown to be necessary, but not sufficient to guarantee accurate estimation of KM and V. Detailed error analysis and numerical “experiments” show the required experimental conditions for the independent estimation of both KM and V from progress curves. A timescale, tQ, measuring the portion of the time course over which the progress curve exhibits substantial curvature provides a novel criterion for accurate estimation of KM and V from a progress curve experiment. It is found that, if the initial substrate concentration is of the same order of magnitude as KM, the estimated values of the KM and V will correspond to their true values calculated from the microscopic rate constants of the corresponding mass-action system, only so long as the initial enzyme concentration is less than KM.


1980 ◽  
Vol 44 (02) ◽  
pp. 111-114 ◽  
Author(s):  
Hiroshi Takayama ◽  
Minoru Okuma ◽  
Haruto Uchino

SummaryTo develop a simple method for estimation of platelet lipoxygenase (PLO) and cyclo-oxygenase (PCO) pathways, the arachidonic acid (AA) metabolism of human platelet was investigated under various experimental conditions by the use of the thiobarbituric acid (TBA) reaction and a radioisotope technique. A TBA-reactive substance different from malondialdehyde (MDA) via PCO pathway was detected and shown to be derived from the PLO pathway. Since the optimal pH and time course of its formation were different from those of MDA formation via PCO pathway, PLO and PCO pathways were estimated by quantitating the TBA-reactive substances produced by the incubation of AA either with aspirin-treated platelets or with untreated ones, respectively, each under optimal conditions. Normal values expressed in terms of nmol MDA/108 platelets were 1.17±0.34 (M±SD, n = 31) and 0.79±0.15 (n = 31) for PLO and PCO pathways, respectively.


1966 ◽  
Vol 16 (03/04) ◽  
pp. 574-585
Author(s):  
G. F Grannis ◽  
L. A Kazal

SummaryThe effects of hereditary deficiencies of thromboplastic proteins (hemophilia A and B) on the time course of thrombin appearance and disappearance in plasma (the thrombin activity curve, TAC) were compared with the effects of a naturally occurring gamma-globulin inhibitor of thromboplastic activity and with an anti-thromboplastic activity derived from cephalin (phosphatidylserine-lipoprotein complex).Both inhibitors inhibit reactions involving the protein in which hemophilia A plasma is deficient (factor VIII).


2013 ◽  
Vol 304 (8) ◽  
pp. R675-R682 ◽  
Author(s):  
Jan Mulder ◽  
Tomas Hökfelt ◽  
Mark M. Knuepfer ◽  
Ulla C. Kopp

Efferent renal sympathetic nerves reinnervate the kidney after renal denervation in animals and humans. Therefore, the long-term reduction in arterial pressure following renal denervation in drug-resistant hypertensive patients has been attributed to lack of afferent renal sensory reinnervation. However, afferent sensory reinnervation of any organ, including the kidney, is an understudied question. Therefore, we analyzed the time course of sympathetic and sensory reinnervation at multiple time points (1, 4, and 5 days and 1, 2, 3, 4, 6, 9, and 12 wk) after renal denervation in normal Sprague-Dawley rats. Sympathetic and sensory innervation in the innervated and contralateral denervated kidney was determined as optical density (ImageJ) of the sympathetic and sensory nerves identified by immunohistochemistry using antibodies against markers for sympathetic nerves [neuropeptide Y (NPY) and tyrosine hydroxylase (TH)] and sensory nerves [substance P and calcitonin gene-related peptide (CGRP)]. In denervated kidneys, the optical density of NPY-immunoreactive (ir) fibers in the renal cortex and substance P-ir fibers in the pelvic wall was 6, 39, and 100% and 8, 47, and 100%, respectively, of that in the contralateral innervated kidney at 4 days, 4 wk, and 12 wk after denervation. Linear regression analysis of the optical density of the ratio of the denervated/innervated kidney versus time yielded similar intercept and slope values for NPY-ir, TH-ir, substance P-ir, and CGRP-ir fibers (all R2 > 0.76). In conclusion, in normotensive rats, reinnervation of the renal sensory nerves occurs over the same time course as reinnervation of the renal sympathetic nerves, both being complete at 9 to 12 wk following renal denervation.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
Jeong Heo Kwon ◽  
Siseon Lee ◽  
Jae-Won Lee ◽  
Youn-Woo Hong ◽  
Jeong Ho Chang ◽  
...  

This paper describes an optimization of planetary mill pretreatment and saccharification processes for improving biosugar production. Pitch pine (Pinus rigida) wood sawdust waste was used as biomass feedstock and the process parameters optimized in this study were the buffering media, the milling time, the enzyme quantity, and the incubation time. Glucose yields were improved when acetate buffer was used rather than citrate buffer. Initially, with each process variable tests, the optimal values were 100 minutes of milling, an enzyme concentration of 16 FPU/g-biomass, and a 12-hour enzymatic hydrolysis. Typically, interactions between these experimental conditions and their effects on glucose production were next investigated using RSM. Glucose yields from thePinus rigidawaste exceeded 80% with several of the conditions tested, demonstrating that milling can be used to obtain high levels of glucose bioconversion from woody biomass for biorefinery purposes.


2001 ◽  
Vol 85 (6) ◽  
pp. 2350-2358 ◽  
Author(s):  
Sanjiv K. Talwar ◽  
Pawel G. Musial ◽  
George L. Gerstein

Studies in several mammalian species have demonstrated that bilateral ablations of the auditory cortex have little effect on simple sound intensity and frequency-based behaviors. In the rat, for example, early experiments have shown that auditory ablations result in virtually no effect on the rat's ability to either detect tones or discriminate frequencies. Such lesion experiments, however, typically examine an animal's performance some time after recovery from ablation surgery. As such, they demonstrate that the cortex is not essential for simple auditory behaviors in the long run. Our study further explores the role of cortex in basic auditory perception by examining whether the cortex is normally involved in these behaviors. In these experiments we reversibly inactivated the rat primary auditory cortex (AI) using the GABA agonist muscimol, while the animals performed a simple auditory task. At the same time we monitored the rat's auditory activity by recording auditory evoked potentials (AEP) from the cortical surface. In contrast to lesion studies, the rapid time course of these experimental conditions preclude reorganization of the auditory system that might otherwise compensate for the loss of cortical processing. Soon after bilateral muscimol application to their AI region, our rats exhibited an acute and profound inability to detect tones. After a few hours this state was followed by a gradual recovery of normal hearing, first of tone detection and, much later, of the ability to discriminate frequencies. Surface muscimol application, at the same time, drastically altered the normal rat AEP. Some of the normal AEP components vanished nearly instantaneously to unveil an underlying waveform, whose size was related to the severity of accompanying behavioral deficits. These results strongly suggest that the cortex is directly involved in basic acoustic processing. Along with observations from accompanying multiunit experiments that related the AEP to AI neuronal activity, our results suggest that a critical amount of activity in the auditory cortex is necessary for normal hearing. It is likely that the involvement of the cortex in simple auditory perceptions has hitherto not been clearly understood because of underlying recovery processes that, in the long-term, safeguard fundamental auditory abilities after cortical injury.


1999 ◽  
Vol 82 (3) ◽  
pp. 1198-1208 ◽  
Author(s):  
Kaoru Yoshida ◽  
Yoshiki Iwamoto ◽  
Sohei Chimoto ◽  
Hiroshi Shimazu

Omnipause neurons (OPNs) are midline pontine neurons that are thought to control a number of oculomotor behaviors, especially saccades. Intracellular recordings were made from OPNs in alert cats to elucidate saccade-associated postsynaptic events in OPNs and thereby determine what patterns of afferent discharge impinge on OPNs to cause their saccadic inhibition. The membrane potential of impaled OPNs exhibited steep hyperpolarization before each saccade that lasted for the whole period of the saccade. The hyperpolarization was reversed to depolarization by intracellular injection of Cl− ions, indicating it consisted of temporal summation of inhibitory postsynaptic potentials (IPSPs). The duration of the saccade-related hyperpolarization was almost equal to the duration of the concurrent saccades. The time course of the hyperpolarization was similar to that of the radial eye velocity except for the initial phase. During the falling phase of eye velocity, the correlation between the instantaneous amplitude of hyperpolarization and the instantaneous eye velocity was highly significant. The amplitude of hyperpolarization at the eye velocity peak was correlated significantly with the peak eye velocity. The time integral of the hyperpolarization was correlated with the radial amplitude of saccades. The initial phase disparity between the hyperpolarization and eye velocity was due to the relative constancy of peak time (∼20 ms) of the initial steep hyperpolarization regardless of the later potential profile that covaried with the eye velocity. The initial steep hyperpolarization led the beginning of saccades by 15.9 ± 3.8 (SD) ms, which is longer than the lead time for medium-lead burst neurons. These results demonstrate that the pause of activity in OPNs is caused by IPSPs initiated by an abrupt, intense input and maintained, for the whole duration of the saccade, by afferents conveying eye velocity signals. We suggest that the initial sudden inhibition originates from central structures such as the superior colliculus and frontal eye fields and that the eye velocity-related inhibition originates from the burst generator in the brain stem.


2021 ◽  
Author(s):  
Julia L. E. Willett ◽  
Jennifer L. Dale ◽  
Lucy M. Kwiatkowski ◽  
Jennifer L. Powers ◽  
Michelle L. Korir ◽  
...  

AbstractEnterococcus faecalis is a common commensal organism and a prolific nosocomial pathogen that causes biofilm-associated infections. Numerous E. faecalis OG1RF genes required for biofilm formation have been identified, but few studies have compared genetic determinants of biofilm formation and biofilm morphology across multiple conditions. Here, we cultured transposon (Tn) libraries in CDC biofilm reactors in two different media and used Tn sequencing (TnSeq) to identify core and accessory biofilm determinants, including many genes that are poorly characterized or annotated as hypothetical. Multiple secondary assays (96-well plates, submerged Aclar, and MultiRep biofilm reactors) were used to validate phenotypes of new biofilm determinants. We quantified biofilm cells and used fluorescence microscopy to visualize biofilms formed by 6 Tn mutants identified using TnSeq and found that disrupting these genes (OG1RF_10350, prsA, tig, OG1RF_10576, OG1RF_11288, and OG1RF_11456) leads to significant time- and medium-dependent changes in biofilm architecture. Structural predictions revealed potential roles in cell wall homeostasis for OG1RF_10350 and OG1RF_11288 and signaling for OG1RF_11456. Additionally, we identified growth medium-specific hallmarks of OG1RF biofilm morphology. This study demonstrates how E. faecalis biofilm architecture is modulated by growth medium and experimental conditions, and identifies multiple new genetic determinants of biofilm formation.ImportanceE. faecalis is an opportunistic pathogen and a leading cause of hospital-acquired infections, in part due to its ability to form biofilms. A complete understanding of the genes required for E. faecalis biofilm formation as well as specific features of biofilm morphology related to nutrient availability and growth conditions is crucial for understanding how E. faecalis biofilm-associated infections develop and resist treatment in patients. We employed a comprehensive approach to analysis of biofilm determinants by combining TnSeq primary screens with secondary phenotypic validation using diverse biofilm assays. This enabled identification of numerous core (important under many conditions) and accessory (important under specific conditions) biofilm determinants in E. faecalis OG1RF. We found multiple genes whose disruption results in drastic changes to OG1RF biofilm morphology. These results expand our understanding of the genetic requirements for biofilm formation in E. faecalis that affect the time course of biofilm development as well as the response to specific nutritional conditions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jun Noguchi ◽  
Akira Nagaoka ◽  
Tatsuya Hayama ◽  
Hasan Ucar ◽  
Sho Yagishita ◽  
...  

Abstract Most excitatory synapses in the brain form on dendritic spines. Two-photon uncaging of glutamate is widely utilized to characterize the structural plasticity of dendritic spines in brain slice preparations in vitro. In the present study, glutamate uncaging was used to investigate spine plasticity, for the first time, in vivo. A caged glutamate compound was applied to the surface of the mouse visual cortex in vivo, revealing the successful induction of spine enlargement by repetitive two-photon uncaging in a magnesium free solution. Notably, this induction occurred in a smaller fraction of spines in the neocortex in vivo (22%) than in hippocampal slices (95%). Once induced, the time course and mean long-term enlargement amplitudes were similar to those found in hippocampal slices. However, low-frequency (1–2 Hz) glutamate uncaging in the presence of magnesium caused spine shrinkage in a similar fraction (35%) of spines as in hippocampal slices, though spread to neighboring spines occurred less frequently than it did in hippocampal slices. Thus, the structural plasticity may occur similarly in the neocortex in vivo as in hippocampal slices, although it happened less frequently in our experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document