Role Of Hmw Kininogen In Polysaccharide Sulfate-Mediated Activation Of Factor XII

1981 ◽  
Author(s):  
H Kato ◽  
T Shimada ◽  
T Sugo ◽  
S Iwanaga

We have shown that bovine HMW kininogen (HMW KGN) accelerates the activation of Factor XII (XII) and prekallikrein (Prek) in the presence of kaolin, adsorbing on kaolin through fragment 1.2 region and forming a complex with Prek through light chain region. The present study was undertaken to examine the functional role of HMW KGN in the activation of XII and Prek with other negatively-charged surfaces than kaolin. XII was incubated with a variety of substances, HMW KGN and Prek, and plasma kallikrein generated was estimated using a fluorogenic peptide substrate, Z- Phe-Arg-MCA.Among 8 kinds of polysaccharide sulfates (dextran sulfate, xylan sulfate, amylopectin sulfate, chondroitin polysulfate, heparan sulfate, amylose sulfate, heparin and carrageenin), amylose sulfate had the most potent ability to activate XII. The experiments using fourteen amylose sulfates with different sulfur content and different viscosity revealed that some amylose sulfates with a higher sulfur content (18%) activated strikingly XII and Prek in the presence of HMW KGN. In the reaction, fragment 1.2-light chain region in HMW KGN was shown to be essential, using the various derivatives of HMW KGN. The rate of XII activation was quite dependent on the concentration of HMW KGN and amylose sulfate. At higher concentrations, both of them inhibited the activation reaction. On the other hand, sulfatide has been shown to accelerate the activation of XII with plasma kallikrein by Fujikawa et al. and the reaction was inhibited by the addition of HMW KGN. In the present study, the activation of XII and Prek with sulfatides as estimated by the generation of kallikrein, was accelerated by HMW KGN. This reaction was also dependent on the concentrations of sulfatides and HMW KGN, and fragment 1.2-light chain region in HMW KGN was shown to be essential.These results indicate that HMW KGN is required to accelerate the activation of XII and Prek with polysaccharide sulfate and sulfatide as well as kaolin.

1979 ◽  
Author(s):  
H. Kato ◽  
T. Sugo ◽  
N. Ikari ◽  
N. Hashimoto ◽  
S. Iwanaga ◽  
...  

Bovine HMW kininogen (HMW-K) has a mol. wt. of 76,000 and the carboxyl-terminal 243 residues consisting of kinin, fragment 1.2 and light chain regions have been sequenced. The purpose of this study is to elucidate the functional regions of the kininogen which are required for the kaolin-mediated activation of Factor XII (XII) in the presence of prekallikrein (Prek). The results were as follows: (1) Kaolin-mediated activation of XII was accelerated 180 fold by adding optimum amounts of HMW-K. (2) The accelerating effect of HMW-K markedly increased by the brief treatment with kallikrein, indicating that a nicked HMW-K, named “Active Kininogen”, is most effective. (3) The same accelerating effect as HMW-K was observed with fragment 1.2-light chain. (4) Prek formed a complex with HMW-K and kinin-fragment 1.2-free protein. Kallikrein also formed a complex with kinin-fragment 1.2-free protein. (5) The adsorption of HMW-K on kaolin was inhibited by fragment 1.2. These results indicate that HMW-K accelerates kaolin-mediated activation or XII by forming a complex with Prek through the light chain region and by interacting with kaolin through the fragment 1.2 region. It was also suggested that plasma kallikrein plays an important role not only In the positive feedback activation of XII but also In the transformation of HMW-K to an “Active Kininogen”.


1992 ◽  
Vol 67 (02) ◽  
pp. 219-225 ◽  
Author(s):  
Walter A Wuillemin ◽  
Miha Furlan ◽  
Hans Stricker ◽  
Bernhard Lämmle

SummaryThe plasma of a healthy woman was found to contain half normal factor XII (FXII) antigen level (0.46 U/ml) without any FXII clotting activity (<0.01 U/ml). The variant FXII in this plasma, denoted as FXII Locarno, was partially characterized by immunological and functional studies on the proposita’s plasma. FXII Locarno is a single chain molecule with the same size (M r = 80 kDa) as normal FXII. Isoelectric focusing suggested an excess of negative charge in the variant FXII as compared to normal FXII. In contrast to FXII in normal plasma, FXII Locarno was not proteolytically cleaved upon prolonged incubation of proposita’s plasma with dextran sulfate. Adsorption to kaolin was similar for both, abnormal and normal FXII. Incubation of the proposita’s plasma with dextran sulfate and exogenous plasma kallikrein showed normal cleavage of FXII Locarno outside of the tentative disulfide loop Cys340-Cys467, but only partial cleavage within this disulfide loop. Furthermore, plasma kallikrein-cleaved abnormal FXII showed neither amidolytic activity nor proteolytic activity against factor XI and plasma prekallikrein.These results suggest a structural alteration of FXII Locarno, affecting the plasma kallikrein cleavage site Arg353-Val354 and thus formation of activated FXII (a-FXIIa).


1979 ◽  
Vol 149 (4) ◽  
pp. 847-855 ◽  
Author(s):  
AG Scicli ◽  
R Waldmann ◽  
JA Guimaraes ◽  
G Scicli ◽  
OA Carretero ◽  
...  

Bovine high molecular weight kininogen (bHMWK) partially corrects the activated plasma thromboplastin time (aPTT) of Fitzgerald trait plasma which is congenitally deficient in HMWK. The relationship between the structure and activity of HMWK was clarified by studying the effects of different fragments of bHMWK on the aPTT of Fitzgerald-trait plasma. The peptides studied were lys-bradykinin-free HMWK, bradykinin-fragment 1-2-free HMWK, heavy chain, fragment 1-2-light chain, and light chain. All fragments were tested in equimolar concentrations. Bradykinin-fragment 1-2-free HMWK, heavy chain, and light chain have little or no correcting activity upon Fitzgerald-trait plasma aPTr. Fragment 1-2 light chain has the same correcting activity as intact bHMWK, while that of lys-bradykinin-free HMWK appears to be higher. Both fragment 1-2 and fragment 2 inhibit the clotting time of normal human plasma. When compared on a molar basis, fragment 2 is a more active inhibitor than fragment 1-2. When the effects of bovine plasma kallikrein upon bHMWK and hHMWK were studied, it was found that it released kinins from both kininogens. However, while the correcting activity of bHMWK was completely destroyed after 60 min of incubation, that of hHMWK was fully retained. These data suggest that: (a) the active part of bHMWK is comprised of the fragment 1-2 light chain portion; (b) fragment 1-2 or fragment 2 is the binding site to negatively charged surfaces, while the light chain interacts with other components of the surface-mediated reactions; and (c) bovine plasma kallikrein releases kinins, but probably does not cause the release of fragment 1-2 from human HMWK.


Blood ◽  
1989 ◽  
Vol 73 (4) ◽  
pp. 994-999
Author(s):  
J Hauert ◽  
G Nicoloso ◽  
WD Schleuning ◽  
F Bachmann ◽  
M Schapira

To elucidate the mechanism by which activation of the contact system of blood coagulation leads to expression of fibrinolytic activity, we have determined the molecular characteristics of the plasminogen activators present in dextran sulfate-treated euglobulin fractions by electrophoretic-zymographic analysis and specific immunoadsorption. In addition to free and protease inhibitor-bound tissue-type plasminogen activator (t-PA), dextran sulfate precipitates of euglobulins contained the complex formed between plasma kallikrein and C1-inhibitor, an indicator of prekallikrein activation. These precipitates also contained substantial fibrinolytic activity related to urinary-type plasminogen activator (u-PA). Autoradiographic analysis was then used to evaluate the cleavage of 125I-single-chain u-PA (prourokinase) in dextran sulfate euglobulins as well as after exposure to kallikrein or beta-factor XIIa. This analysis supported the conclusion that plasma kallikrein-mediated cleavage and activation of single-chain u-PA is the mechanism operative for the development of lytic activity in euglobulin precipitates following activation of the contact system.


2017 ◽  
Vol 43 (08) ◽  
pp. 814-826 ◽  
Author(s):  
Clément Naudin ◽  
Elena Burillo ◽  
Stefan Blankenberg ◽  
Lynn Butler ◽  
Thomas Renné

AbstractContact activation is the surface-induced conversion of factor XII (FXII) zymogen to the serine protease FXIIa. Blood-circulating FXII binds to negatively charged surfaces and this contact to surfaces triggers a conformational change in the zymogen inducing autoactivation. Several surfaces that have the capacity for initiating FXII contact activation have been identified, including misfolded protein aggregates, collagen, nucleic acids, and platelet and microbial polyphosphate. Activated FXII initiates the proinflammatory kallikrein-kinin system and the intrinsic coagulation pathway, leading to formation of bradykinin and thrombin, respectively. FXII contact activation is well characterized in vitro and provides the mechanistic basis for the diagnostic clotting assay, activated partial thromboplastin time. However, only in the past decade has the critical role of FXII contact activation in pathological thrombosis been appreciated. While defective FXII contact activation provides thromboprotection, excess activation underlies the swelling disorder hereditary angioedema type III. This review provides an overview of the molecular basis of FXII contact activation and FXII contact activation–associated disease states.


Blood ◽  
1985 ◽  
Vol 65 (2) ◽  
pp. 311-318 ◽  
Author(s):  
RW Colman ◽  
YT Wachtfogel ◽  
U Kucich ◽  
G Weinbaum ◽  
S Hahn ◽  
...  

Abstract Human plasma kallikrein consists of an N-terminal heavy chain of molecular weight (mol wt) 52,000, linked by disulfide bonds to two light chain variants (mol wt 36,000 or 33,000). Although the active catalytic site of kallikrein resides on the C-terminal light chain, the role of the N-terminal heavy chain is less clear. We therefore studied an enzyme designated beta-kallikrein, containing a single cleavage in the heavy chain (mol wt 28,000 + 18,000) and compared it to the enzyme, alpha-kallikrein, with an intact heavy chain. The rates of inactivation by C1 inhibitor of plasma alpha- and beta-kallikreins were kinetically identical, as measured by residual amidolytic activity, after various times of incubation with the inhibitor. Both enzymes reacted completely with C1 inhibitor after 18 hours and formed identical C1 inhibitor- kallikrein complexes of mol wt 195,000. The rate of activation of factor XII by alpha-kallikrein and beta-kallikrein was similar. In contrast, the rate of cleavage of high molecular weight kininogen (HMWK) by alpha-kallikrein was at least fivefold faster and the ratio of coagulant activity to amidolytic activity was fourfold greater than for beta-kallikrein. Plasma alpha-kallikrein, at concentrations potentially achievable in plasma, induced aggregation of neutrophils, but beta-kallikrein failed to elicit this response. In addition, human neutrophils pretreated with cytochalasin B released 2.46 +/- 0.10 microgram/10(7) cells of elastase antigen, but beta-kallikrein released only 0.25 +/- 0.10 micrograms/10(7) cells. These observations suggest that cleavage of the heavy chain influences the rate of cleavage of HMWK and decreases its coagulant activity. Moreover, an intact heavy chain appears to be requisite to support the ability of kallikrein to aggregate neutrophils and release elastase.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4198-4206 ◽  
Author(s):  
Franca Citarella ◽  
Giorgio Fedele ◽  
Dorina Roem ◽  
Antonio Fantoni ◽  
C. Erik Hack

Abstract Contact system activation, in vitro, is triggered by activation of factor XII (FXII) on binding to an activator, such as negatively charged surfaces. A putative surface-binding site of FXII has been located within the amino acid residues 1-28 by identifying the epitope recognized by a monoclonal antibody (MoAb), B7C9, which inhibits kaolin-induced clotting activity. To further elucidate the role of the amino terminal binding site in the regulation of FXII activation, we have characterized a FXII recombinant protein (rFXII-▵19) deleted of the amino acid residues 3-19, which are encoded by the second exon of FXII gene. A plasmid encoding for rFXII-▵19 was constructed and expressed in HepG2 cells by using vaccinia virus. Purified rFXII-▵19 migrated as a single band of Mr 77,000 on sodium dodecyl sulfate (SDS)-polyacrylamide gel, did not bind to MoAb B7C9 immobilized on Protein A-Sepharose, thus confirming that it lacked the epitope for this MoAb, and had no amidolytic activity towards the chromogenic substrate S-2302 in the absence of activator. rFXII-▵19 specific clotting activity was lower (44%) than that of native FXII. The activation rate of rFXII-▵19 by kallikrein in the absence of dextran sulfate was about four times higher than that of full-length FXII and was increased in the presence of dextran sulfate. However, rFXII-▵19 underwent autoactivation in the presence of dextran sulfate. Labeled rFXII-▵19 bound to kaolin, which binding was equally well inhibited by either, rFXII-▵19 or full-length FXII (IC50 = 7.2 ± 2.2 nmol/L for both proteins). Accordingly, a synthetic peptide corresponding to FXII amino acid residues 3-19 did not inhibit the binding of labeled full-length FXII to kaolin. rFXII-▵19 generated a similar amount of FXIIa- and kallikrein-C1–inhibitor complexes in FXII-deficient plasma in the presence of kaolin, as did full-length FXII; but generated less factor XIa-C1–inhibitor complexes (50%) than full-length FXII. This impaired factor XI activation by rFXII-▵19a was also observed in a purified system and was independent of the presence of high molecular weight kininogen. Furthermore, the synthetic peptide 3-19, preincubated with factor XI, inhibited up to 30% activation of factor XI both in the purified system as well as in plasma. These results together indicate that amino acid residues 3-19 of FXII are involved in the activation of factor XI and do not contribute to the binding of FXII to negatively charged surfaces.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4198-4206 ◽  
Author(s):  
Franca Citarella ◽  
Giorgio Fedele ◽  
Dorina Roem ◽  
Antonio Fantoni ◽  
C. Erik Hack

Contact system activation, in vitro, is triggered by activation of factor XII (FXII) on binding to an activator, such as negatively charged surfaces. A putative surface-binding site of FXII has been located within the amino acid residues 1-28 by identifying the epitope recognized by a monoclonal antibody (MoAb), B7C9, which inhibits kaolin-induced clotting activity. To further elucidate the role of the amino terminal binding site in the regulation of FXII activation, we have characterized a FXII recombinant protein (rFXII-▵19) deleted of the amino acid residues 3-19, which are encoded by the second exon of FXII gene. A plasmid encoding for rFXII-▵19 was constructed and expressed in HepG2 cells by using vaccinia virus. Purified rFXII-▵19 migrated as a single band of Mr 77,000 on sodium dodecyl sulfate (SDS)-polyacrylamide gel, did not bind to MoAb B7C9 immobilized on Protein A-Sepharose, thus confirming that it lacked the epitope for this MoAb, and had no amidolytic activity towards the chromogenic substrate S-2302 in the absence of activator. rFXII-▵19 specific clotting activity was lower (44%) than that of native FXII. The activation rate of rFXII-▵19 by kallikrein in the absence of dextran sulfate was about four times higher than that of full-length FXII and was increased in the presence of dextran sulfate. However, rFXII-▵19 underwent autoactivation in the presence of dextran sulfate. Labeled rFXII-▵19 bound to kaolin, which binding was equally well inhibited by either, rFXII-▵19 or full-length FXII (IC50 = 7.2 ± 2.2 nmol/L for both proteins). Accordingly, a synthetic peptide corresponding to FXII amino acid residues 3-19 did not inhibit the binding of labeled full-length FXII to kaolin. rFXII-▵19 generated a similar amount of FXIIa- and kallikrein-C1–inhibitor complexes in FXII-deficient plasma in the presence of kaolin, as did full-length FXII; but generated less factor XIa-C1–inhibitor complexes (50%) than full-length FXII. This impaired factor XI activation by rFXII-▵19a was also observed in a purified system and was independent of the presence of high molecular weight kininogen. Furthermore, the synthetic peptide 3-19, preincubated with factor XI, inhibited up to 30% activation of factor XI both in the purified system as well as in plasma. These results together indicate that amino acid residues 3-19 of FXII are involved in the activation of factor XI and do not contribute to the binding of FXII to negatively charged surfaces.


Blood ◽  
1989 ◽  
Vol 73 (4) ◽  
pp. 994-999 ◽  
Author(s):  
J Hauert ◽  
G Nicoloso ◽  
WD Schleuning ◽  
F Bachmann ◽  
M Schapira

Abstract To elucidate the mechanism by which activation of the contact system of blood coagulation leads to expression of fibrinolytic activity, we have determined the molecular characteristics of the plasminogen activators present in dextran sulfate-treated euglobulin fractions by electrophoretic-zymographic analysis and specific immunoadsorption. In addition to free and protease inhibitor-bound tissue-type plasminogen activator (t-PA), dextran sulfate precipitates of euglobulins contained the complex formed between plasma kallikrein and C1-inhibitor, an indicator of prekallikrein activation. These precipitates also contained substantial fibrinolytic activity related to urinary-type plasminogen activator (u-PA). Autoradiographic analysis was then used to evaluate the cleavage of 125I-single-chain u-PA (prourokinase) in dextran sulfate euglobulins as well as after exposure to kallikrein or beta-factor XIIa. This analysis supported the conclusion that plasma kallikrein-mediated cleavage and activation of single-chain u-PA is the mechanism operative for the development of lytic activity in euglobulin precipitates following activation of the contact system.


1981 ◽  
Author(s):  
A M Bubnic ◽  
T R Zuffi ◽  
M A Fournel

In an effort to assess the physiological significance of a soluble activator of Factor XII, the kinetics of F. XII and prekallikrein activation and subsequent kinin formation have been investigated using dextran sulfate. Employing an amidolytic assay for kallikrein and a bioassay for kinin activity a reproducible lag in the generation of detectable kallikrein activity has been demonstrated in the presence of explosive kinin generation. Time, temperature and concentration kinetics have been determined as well as characterization of this system with prekallikrein activator (PKA; B-XIIa; XIIf), selective inhibitors and deficient plasmas. These studies have shown that kinin activity is generated in substantial amounts prior to the generation of any significant kallikrein activity by the activation of F. XII, suggesting that the physiological role of prekallikrein activation in kinin generation may be relatively minor. In vivo animal studies with PKA appear to confirm this finding with insignificant alterations in prekallikrein titers in the presence of marked systemic kinin-mediated hypotension.


Sign in / Sign up

Export Citation Format

Share Document