Plasminogen Activation by Invasive Human Pathogens

1997 ◽  
Vol 77 (01) ◽  
pp. 001-010 ◽  
Author(s):  
Michael D P Boyle ◽  
Richard Lottenberg

SummaryIn this review the interaction between invasive human pathogens expressing plasmin(ogen) receptors and/or producing plasminogen activators with the human plasmin(ogen) system is described. Evidence is presented for multiple mechanisms by which human pathogens can acquire a surface bound form of plasmin that cannot be regulated by host serpins. The potential importance of these pathways in providing the organisms with the ability to cross tissue barriers is discussed.

1994 ◽  
Vol 71 (05) ◽  
pp. 684-691 ◽  
Author(s):  
László Damjanovich ◽  
Csaba Turzó ◽  
Róza Ádány

SummaryThe plasminogen activation system is a delicately balanced assembly of enzymes which seems to have primary influence on tumour progression. The conversion of plasminogen into serine protease plasmin with fibrinolytic activity depends on the actual balance between plasminogen activators (urokinase type; u-PA and tissue type; t-PA) and their inhibitors (type 1 and 2 plasminogen activator inhibitors; PAI-1 and PAI-2). The purpose of this study was to determine the exact histological localization of all the major factors involved in plasminogen activation, and activation inhibition (plasmin system) in benign and malignant breast tumour samples. Our results show that factors of the plasmin system are present both in benign and malignant tumours. Cancer cells strongly labelled for both u-PA and t-PA, but epithelial cells of fibroadenoma samples were also stained for plasminogen activators at least as intensively as tumour cells in cancerous tissues. In fibroadenomas, all the epithelial cells were labelled for PAM. Staining became sporadic in malignant tumours, cells located at the periphery of tumour cell clusters regularly did not show reaction for PAI-1. In the benign tumour samples the perialveolar connective tissue stroma contained a lot of PAI-1 positive cells, showing characteristics of fibroblasts; but their number was strongly decreased in the stroma of malignant tumours. These findings indicate that the higher level of u-PA antigen, detected in malignant breast tumour samples by biochemical techniques, does not necessarily indicate increased u-PA production by tumour cells but it might be owing to the increased number of cells producing u-PA as well. In malignant tumours PAI-1 seems to be decreased in the frontage of malignant cell invasion; i.e. malignant cells at the host/tumour interface do not express PAI-1 in morphologically detectable quantity and in the peritumoural connective tissue the number of fibroblasts containing PAI-1 is also decreased.


1972 ◽  
Vol 28 (01) ◽  
pp. 075-088 ◽  
Author(s):  
N. A Marsh ◽  
C. L Arocha-Pinango

SummaryA study was carried out in order to evaluate the Astrup and Mullertz fibrin plate method for estimating plasminogen activators.Choice of a suitable fibrinogen substrate was found to be the most important factor in setting up a workable assay. Many preparations contained a large proportion of non-clottable protein and plates made from these fibrinogens were usually unreliable. In addition, plasminogen content varied appreciably between preparations so that sensitivity of the method required careful calibration with each new batch of fibrinogen.The effect of additives in the fibrin plate was considered and it was found that calcium chloride alone was sufficient to ensure a stabilised plate which could be stored at 4° C for some time. The addition of tranexamic acid (AMCHA) was found to be a slightly more convenient way of estimating direct proteolytic activity, compared with the traditional heated plate. However neither method distinguished completely between proteolysis and plasminogen activation.In order to improve the precision of the method, the use of an analysis of variance technique has been studied. This technique provides information on the dose-response curves of test and unknown substances, and in addition produces an approximately threefold increase in precision over single plate tests.


2021 ◽  
Vol 7 (6) ◽  
pp. eabe3362 ◽  
Author(s):  
Thiago Luiz Alves e Silva ◽  
Andrea Radtke ◽  
Amanda Balaban ◽  
Tales Vicari Pascini ◽  
Zarna Rajeshkumar Pala ◽  
...  

Plasmodium parasites must migrate across proteinaceous matrices to infect the mosquito and vertebrate hosts. Plasmin, a mammalian serine protease, degrades extracellular matrix proteins allowing cell migration through tissues. We report that Plasmodium gametes recruit human plasminogen to their surface where it is processed into plasmin by corecruited plasminogen activators. Inhibition of plasminogen activation arrests parasite development early during sexual reproduction, before ookinete formation. We show that increased fibrinogen and fibrin in the blood bolus, which are natural substrates of plasmin, inversely correlate with parasite infectivity of the mosquito. Furthermore, we show that sporozoites, the parasite form transmitted by the mosquito to humans, also bind plasminogen and plasminogen activators on their surface, where plasminogen is activated into plasmin. Surface-bound plasmin promotes sporozoite transmission by facilitating parasite migration across the extracellular matrices of the dermis and of the liver. The fibrinolytic system is a potential target to hamper Plasmodium transmission.


Blood ◽  
2001 ◽  
Vol 97 (6) ◽  
pp. 1703-1711 ◽  
Author(s):  
Frederic Lluı́s ◽  
Josep Roma ◽  
Mònica Suelves ◽  
Maribel Parra ◽  
Gloria Aniorte ◽  
...  

Plasminogen activators urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) are extracellular proteases involved in various tissue remodeling processes. A requirement for uPA activity in skeletal myogenesis was recently demonstrated in vitro. The role of plasminogen activators in skeletal muscle regeneration in vivo in wild-type, uPA-deficient, and tPA-deficient mice is investigated here. Wild-type and tPA−/− mice completely repaired experimentally damaged skeletal muscle. In contrast, uPA−/− mice had a severe regeneration defect, with decreased recruitment of blood-derived monocytes to the site of injury and with persistent myotube degeneration. In addition, uPA-deficient mice accumulated fibrin in the degenerating muscle fibers; however, the defibrinogenation of uPA-deficient mice resulted in a correction of the muscle regeneration defect. A similar severe regeneration deficit with persistent fibrin deposition was also reproducible in plasminogen-deficient mice after injury, suggesting that fibrinolysis by uPA-mediated plasminogen activation plays a fundamental role in skeletal muscle regeneration. In conclusion, the uPA-plasmin system is identified as a critical component of the mammalian skeletal muscle regeneration process, possibly because it prevents intramuscular fibrin accumulation and contributes to the adequate inflammatory response after injury. These studies demonstrate the requirement of an extracellular proteolytic cascade during muscle regeneration in vivo.


1975 ◽  
Author(s):  
N. Aoki ◽  
M. Matsuda ◽  
M. Moroi ◽  
N. Yoshida

A fraction of human plasma prolongs the activator-induced clot lysis time and inhibits plasminogen activation by the plasminogen activators derived from various sources (urine and tissues). This fraction, designated as antiactivator fraction, was separatid from antiplasmin fractions (α2-macroglobulin and α1-antitrypsin) by gel filtration and affinity chromatography on Sepharose coupled with IgG of antiserum to α1-antitrypsin. Anti-activator fraction thus obtained exerted little antiplasmin activity but inhibited strongly activator-induced clot lysis.Inhibitory effect of plasma on urokinase-induced clot lysis (antiactivator activity) was assayed in various diseases and compared with antiplasmin activity. No correlation was found between the two activities, and it was concluded that the two activities are independent and are ascribed to two different entities.


1974 ◽  
Vol 32 (02/03) ◽  
pp. 325-340 ◽  
Author(s):  
Sixtus Thorsen ◽  
Preben Kok ◽  
Tage Astrup

SummaryIncreasing concentrations of EACA produce a biphasic pattern of inhibition and enhancement of urokinase-induced lysis of bovine fibrin containing bovine plasminogen, while the inhibition of fibrinolysis induced by a porcine tissue plasminogen activator increases uniformly. The biphasic EACA pattern is also observed with human plasminogen in fibrinolytic and caseinolytic assays of urokinase. The biphasic EACA pattern produced with urokinase is related to the presence of a genuine form of plasminogen. The enhancement phase is caused by an increased rate of plasminogen activation in the presence of EACA. A brief treatment of genuine plasminogen with acid at ionic strength 0.15 results in an enhanced susceptibility to plasminogen activators and in a partial abolishment of the biphasic response. These acid-induced alterations of plasminogen seem to be reversed by acid dialysis at low ionic strength. Other preparations of plasminogen with enhanced susceptibility to activators have lost the ability to produce a biphasic pattern of inhibition and enhancement of urokinase-induced plasminogen activation in the presence of EACA and this ability does not return after acid dialysis at low ionic strength. EACA inhibits all plasmin preparations, whether prepared from genuine or altered forms of plasminogen, in the same uniform manner.Our results show that different forms of plasminogen can be identified by differences in the susceptibilities to activators, by their response to EACA, and by the reversibility or irreversibility of the alterations.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e15111-e15111
Author(s):  
Evgeniy N. Kolesnikov ◽  
Elena Alekseevna Nikipelova ◽  
Elena Mikhaylovna Frantsiyants ◽  
Larisa Kozlova ◽  
Valeria Bandovkina ◽  
...  

e15111 Background: Plasminogen activators play a key role in the cascade fibrinolytic system as they catalyze plasmin formation from plasminogen (PG). Plasminogen activators together with plasmin are directly or indirectly involved in tumor growth. The purpose of the study was to compare the plasminogen activation system in primary adenocarcinomas (РА) of the rectum (R) with and without liver metastases (LM). Methods: Tissues of tumors (РА, st. III, G2, 38-74 years) and their perifocal zone (PZ) with LM (T2-3NхM1, n = 24) and without them (T2-3N0M0, n = 32) were studied by ELISA. Results: The studied parameters did not differ in apparently intact R tissues in the resection line (RL) with and without LM. Plasmin-α2-antiplasmin complex (PAP) was 1.4 times higher in PA with LM than without LM (p < 0.05). Prourokinase and urokinase levels (uPA-Ag and uPA-act) were 12.4 and 3.7 higher than in RL. uPA-Ag and uPA-act in PA+LM were higher than without LM by 1.4 and 1.6 times. PG levels and α2-macroglobulin (α2M) activity in PA+LM were lower by 1.5 and 2.7 times than in PA without LM and lower than in RL (p < 0.01). All studied parameters, except α2M, in PA+LM were activated more than in PA without LM. Low α2M content supposed realization of effects of uPA and plasmin in insufficient inhibitory control. Most parameters in PZ+LM were between the levels in PA and RL being significantly different from both and significantly exceeding the values in PZ of PA without LM. α2М was an exception being 1.8 times lower in PZ of PA+LM than in PZ of PA without LM. The results demonstrated higher uPA and РАР levels in PA and its PZ with LM than without them, with increased PG consumption and decreased α2M activity in these parts of the rectum. Activation of plasminogen system in tissues of PA+LM and in PA without LM was unidirectional. Conclusions: Levels of uPA and PAP, as well as low α2M content in PA and PZ with LM can be used as an indicator of tumor metastatic activity.


1999 ◽  
Vol 82 (08) ◽  
pp. 974-982 ◽  
Author(s):  
Ronald Stewart ◽  
James Fredenburgh ◽  
Jeffrey Weitz

IntroductionAcute coronary ischemic syndromes and stroke are usually caused by thrombosis in arteries where obstruction leads to ischemia of the heart or brain, respectively. Likewise, venous thrombosis predisposes to pulmonary emboli that cause infarction of lung tissue by blocking pulmonary arteries. Although antithrombotic drugs form the cornerstone of treatment of established thrombosis, pharmacologic lysis of fibrin thrombi, using plasminogen activators, is a widely used approach for treatment of acute myocardial infarction and selected cases of stroke or venous thromboembolism.Plasminogen activators cause thrombus dissolution by initiating fibrinolysis (Fig. 1). The fibrinolytic system is comprised of inactive plasminogen, which is converted to plasmin by plasminogen activators.1 Plasmin, a trypsin-like serine protease, degrades fibrin into soluble fibrin degradation products. The fibrinolytic system is regulated to provide efficient localized activation of plasminogen on the fibrin surface, yet prevent systemic plasminogen activation. To localize plasminogen activation to the fibrin surface, both plasminogen and tissue-type plasminogen activator (t-PA), the major initiator of intravascular fibrinolysis, bind to fibrin. Plasminogen activator inhibitors,2 the most important of which is type-1 plasminogen activator inhibitor (PAI-1), prevent excessive plasminogen activation by t-PA and urokinase-type plasminogen activator (u-PA). Systemic plasmin is rapidly inhibited by α2-antiplasmin, whereas plasmin generated on the fibrin surface is relatively protected from inactivation by α2-antiplasmin.3 The beneficial effect of thrombolytic therapy reflects dissolution of fibrin within occlusive thrombi and subsequent restoration of antegrade blood flow. Bleeding, the major side effect of thrombolytic therapy, occurs because plasmin is a relatively nonspecific enzyme that does not distinguish between fibrin in occlusive thrombi and fibrin in hemostatic plugs. In addition, circulating plasmin also degrades fibrinogen and other clotting factors, a phenomenon known as the systemic lytic state. Although the contribution of the systemic lytic state to bleeding remains controversial, much attention has focussed on the development of plasminogen activators that produce thrombolysis without depleting circulating fibrinogen in the hope that agents with greater fibrin-specificity will produce less bleeding.In addition to causing bleeding, currently available plasminogen activators have other limitations. Despite aggressive dosing regimens and adjunctive antithrombotic drugs, up to 25% of coronary thrombi are resistant to thrombolysis at 60 to 90 minutes. Early thrombotic reocclusion of previously opened coronary arteries further reduces the benefits of thrombolytic therapy.4-6 These problems have triggered the quest for more potent thrombolytic agents that have the potential to overcome factors that render some thrombi resistant to lysis. Furthermore, to simplify administration, plasminogen activators with longer half-lives have been developed so that bolus dosing is possible.This chapter reviews the mechanism of action of currently available plasminogen activators, including agents with greater fibrin-specificity, longer half-lives, and a potential for increased thrombolytic potency.


Sign in / Sign up

Export Citation Format

Share Document