A Comparison of Pentosan Polysulphate (SP54) and Heparin I: Mechanism of Action on Blood Coagulation

1982 ◽  
Vol 47 (02) ◽  
pp. 104-108 ◽  
Author(s):  
A-M Fischer ◽  
T W Barrowcliffe ◽  
D P Thomas

SummaryThe effects of SP54 on inhibition of thrombin, factor Xa and factor IXa, in the presence and absence of antithrombin III (At III), have been examined and compared to those of heparin. SP54 potentiated inhibition of thrombin and Xa by purified At III, but crossed immunoelectrophoresis data indicated that these effects were mediated by binding to the enzyme, rather than to At III. Relatively high concentrations of SP54 were required for inhibition of thrombin and Xa in plasma, but at concentrations less than 2 μg/ml there was a marked suppression of the intrinsic activation of factor X. This effect was shown to be independent of At III, and to be due largely to inhibition of factor IXa. Prothrombin activation by factor Xa and phospholipid was also suppressed by SP54 in the absence of At III, and its effect on the APTT was also shown to be independent of At III. It is concluded that at relatively low concentrations the anticoagulant actions of SP54 are mainly due to these At III-independent pathways.

1987 ◽  
Author(s):  
J Pieters ◽  
G willems ◽  
H C Hemker ◽  
T Lindout

The heparin-catalyzed inactivation of activated coagulation factors by antithrombin III (AT III) has mostly been studied for isolated serine proteases. However, we decided to study the action of heparin and AT III under more physiological conditions, i.e. during the activation of factor X by factor IXa in the presence of phospholipid and calcium. Thereby we made use of a mathematical model which describes the generation of factor Xa by factor IXa, phospholipid and calcium in the presence of AT III and heparin. Fitting the experimental factor Xa generation curve to a set of equations gave the pseudo-first-order rate constants of factor Xa and factor IXa. In a first approach we examined the effect of AT III alone on factor X activation. We found that the second order rate constant of inhibition of formed factor Xa was 2 x 10 5M-1min-1 , whereas that of factor Xa in free solution was 5 x 10 5M-1min-1 , indicating that phospholipid-bound factor X competes with AT III for factor Xa. The second order rate constant of inhibiton of factor IXa, either in the presence or absence of accessory components, was 8 x 103 M-1min-1. Unfractionated heparin (UFH; 168 USP units/mg) was found to stimulate the inhibition of generated factor Xa by AT III (200 nM) with 0.1 min-1 per nM of UFH, and a synthetic pentasaccharide (PS; 4000 anti-Xa units/mg) stimulated this inhibition with only 0.03 min-1per nM. Due to the presence of phospholipid-bound factor X this stimulation was 4-fold less when compared with factor Xa in free solution. At UFH concentrations higher than 3 nM, and PS concentrations exceeding 10 nM hardly any active factor Xa generation could be measured because of the rapid inactivation of factor Xa whereas factor IXa was not inhibited. Using a factor IXa assay we found that PS, even at relatively high concentrations, had no effect on factor IXa inactivation by AT III (200 nM), both in the presence and absence of accessory components. The inactivation of factor IXa by AT III (200 nM) during factor X activation was stimulated by UFH with 1.6 x 10 -2min-1 per nM of UFH. Surprisingly, this was 4-fold more when compared with factor IXa in the absence of accessory components. We established that calcium stimulates the heparin-dependent inhibition of factor IXa.


1991 ◽  
Vol 66 (03) ◽  
pp. 306-309 ◽  
Author(s):  
Suzette Béguin ◽  
Frédérique Dol ◽  
H Coenraad Hemker

SummaryWe investigated whether the inactivation of factor IXa contributes to the partial inhibition of thrombin formation that is observed at therapeutic concentrations of heparin. The action of standard unfractionated heparin (0.05 U/ml) on thrombin formation in the intrinsic system was compared to that of a mixture of dermatan sulfate (DS) and a synthetic pentasaccharide (PS). DS enhances the action of heparin cofactor II which inhibits thrombin only. PS specifically enhances the anti-factor Xa activity of antithrombin III (AT III). The concentrations of DS and PS were chosen so as to obtain equal anti-thrombin and anti-factor Xa activities as in 0.05 U/ml heparin. An extra inhibitory effect of heparin over the mixture is observed in situations where free factor IXa, not bound to factor VIIIa and phospholipid, limits the rate of thrombin formation, notably in contact activated plasma. We conclude that the inactivation of free factor IXa by heparin contributes importantly to the inhibition of thrombin formation in the intrinsic system such as e.g. measured in the activated partial thromboplastin time.


1981 ◽  
Author(s):  
F Ofosu ◽  
A Cerskus ◽  
J Hirsh ◽  
M A Blajchman

The predominant mode of the anticoagulant action of heparin is considered to be the enhancement of the rate of inactivation, by antithrombin-III, of several activated clotting factors. Recent evidence, however, suggests that heparin can reversibly inhibit the activation of prothrombin and factor X even in the absence of anti- thrombin-III. This antithrombin-III-independent action of heparin has been demonstrated only in purified clotting factor systems. In order to determine the significance of the antithrombin-III-independent effects of heparin in plasma, the effects of heparin on the activation of factor X and prothrombin were studied in antithrombin-III- depleted plasma produced by affinity chromatography of normal plasma on heparin-Sepharose. Heparin partially inhibited the activation of factor X and prothrombin on the addition of either factor IXa or factor Xa in anti- thrombin-III-depleted plasma. This inhibition was demonstrable only when high concentrations (1 or 10 units/ ml) of heparin were used. In contrast, when as little as 1% antithrombin-III was added to antithrombin-III-depleted plasma containing 1.0 u of heparin per ml of plasma, no factor X or prothrombin activation could be demonstrated. Thus, it appears that in comparison with the magnitude of the antithrombin-III-dependent effect, the contribution of the antithrombin-III-independent anticoagulant effect of heparin on the activation of factor X and prothrombin in normal plasma is limited.


1987 ◽  
Vol 243 (2) ◽  
pp. 579-588 ◽  
Author(s):  
F A Ofosu ◽  
P Sie ◽  
G J Modi ◽  
F Fernandez ◽  
M R Buchanan ◽  
...  

Heparin catalyses the inhibition of two key enzymes of blood coagulation, namely Factor Xa and thrombin, by enhancing the antiproteinase activities of plasma antithrombin III and heparin cofactor II. In addition, heparin can directly inhibit the activation of Factor X and prothrombin. The contributions of each of these effects to the anticoagulant activity of heparin have not been delineated. We therefore performed experiments to assess how each of these effects of heparin contributes to its anticoagulant activity by comparing the effects of heparin, pentosan polysulphate and D-Phe-Pro-Arg-CH2Cl on the intrinsic pathway of coagulation. Unlike heparin, pentosan polysulphate catalyses only the inhibition of thrombin by plasma. D-Phe-Pro-Arg-CH2Cl is rapid enough an inhibitor of thrombin so that when added to plasma no complexes of thrombin with its inhibitors are formed, whether or not the plasma also contains heparin. Heparin (0.66 microgram/ml) and pentosan polysulphate (6.6 micrograms/ml) completely inhibited the intrinsic-pathway activation of 125I-prothrombin to 125I-prothrombin fragment 1 + 2 and 125I-thrombin. On the addition of thrombin, a good Factor V activator, to the plasma before each sulphated polysaccharide, the inhibition of prothrombin activation was demonstrable only in the presence of higher concentrations of the sulphated polysaccharide. D-Phe-Pro-Arg-CH2Cl also completely inhibited the intrinsic-pathway activation of prothrombin in normal plasma. The inhibitory effect of D-Phe-Pro-Arg-CH2Cl was reversed if thrombin was added to the plasma before D-Phe-Pro-Arg-CH2Cl. The inhibition of the activation of prothrombin by the three agents was also abolished with longer times with re-added Ca2+. Reversal of the inhibitory effects of heparin and pentosan polysulphate was associated with the accelerated formation of 125I-thrombin-antithrombin III and 125I-thrombin-heparin cofactor complexes respectively. These results suggest that the anticoagulant effects of heparin and pentosan polysulphate are mediated primarily by their ability to inhibit the thrombin-dependent activation of Factor V, thereby inhibiting the formation of prothrombinase complex, the physiological activator of prothrombin.


1980 ◽  
Vol 44 (02) ◽  
pp. 092-095 ◽  
Author(s):  
T H Tran ◽  
C Bondeli ◽  
G A Marbet ◽  
F Duckert

SummaryTwo different AT-III fractions were purified from the plasma of a patient with recurrent superficial thrombophlebitis. The abnormal AT-III fraction (A-AT) was compared to the normal AT-III fraction (N-AT) in the inhibition of thrombin and factor Xa. Without heparin, both inactivate proteases in a similar manner and at the same rate. However, at low heparin concentration the thrombin inhibition proceeds more slowly with A-AT than with N-AT. At high heparin concentration the difference between A-AT and N-AT becomes very small. The inhibition of factor Xa follows a similar pattern. It is suggested that the heparin binding site of A-AT differs from that of N-AT resulting in a decreased heparin cofactor activity.


1981 ◽  
Vol 46 (04) ◽  
pp. 749-751 ◽  
Author(s):  
E Cofrancesco ◽  
A Vigo ◽  
E M Pogliani

SummaryThe ability of heparin and related glycosaminoglycans (GAGs) to accelerate the inhibition of thrombin, factor Xa and plasmin in plasma and in a purified system containing antithrombin III (At III) was studied using chromogenic peptide substrate assaysThere was a good correlation between the charge density of the mucopolysaccharides and the activities investigated. While the difference between potentiation of the antithrombin activity by GAGs in plasma and in the purified system was slight, the inhibition of factor Xa in plasma was more pronounced than in the presence of purified At III, indicating the mechanisms for GAGs-potentiated inhibition of thrombin and factor Xa are not identical.For the antiplasmin activity, there was a good correlation between the chemical structure and biological activity only in the pure system, confirming that the antithrombin-GAG complex plays a very limited role in the inactivation of plasmin in plasma.


1982 ◽  
Vol 47 (02) ◽  
pp. 096-100 ◽  
Author(s):  
K Mertens ◽  
R M Bertina

SummaryThe intrinsic activation of human factor X has been studied in a system consisting of purified factors and in plasma. In both these systems factor Xa stimulated the activation of factor X by factor IXa plus factor VIII This is due to the activation of factor VIII by factor Xa. When this factor Xa is formed via the extrinsic pathway, the extrinsic factor X activator functions as a stimulator of the intrinsic factor X activator.


Author(s):  
B ROUSSEL ◽  
J DIEVAL ◽  
S GROSS ◽  
J F CLAISSE ◽  
J DELOBEL

A qualitative abnormality of AT III suggested by the discrepancy between a normal level of AT III antigen (0,33 g/1) and a decreased heparin cofactor activity (60 % of normal) was discovered in a 37 years old woman during a routine laboratory examination for oral contraceptive. The propositus was asymptomatic as she did not developpe any thrombo-embolic disease during three previous pregnancies. There was no familial history of thrombo-embolism. The AT III level measured by radial immuno-diffusion was within the normal range. The progressive anti factor lia and anti factor Xa activities (chromogenic substrates CBS 3 447 and CBS 3 139) were normal (92 % and 100 %). Plasma and serum crossed immunoelectrophoresis (CIE) showed a normal pattern. In the presence of heparin, anti factor Xa and anti factor Xa activities were decreased (60 % and 45 %); Plasma and serum crossed immunoelectrophoresis showed an abnormal slow moving peak exhibiting the inhability of the molecule to bind completely to heparin. CIE with various other glycosaminoglycans are on experiments.Familial study revealed that the daughter of the propositus was carrying the same molecular abnormality.We conclude that AT III Amiens is an hereditary type III variant.


Blood ◽  
1985 ◽  
Vol 65 (5) ◽  
pp. 1226-1231 ◽  
Author(s):  
TB McNeely ◽  
MJ Griffith

Abstract The effects of heparin on the activation of blood coagulation factors IX and X in contact-activated plasma were determined in the present study. In the presence and absence of 0.5 U/mL heparin, the amounts of factor IX that were cleaved 30 minutes after the addition of calcium and phospholipid to plasma exposed to glass (ie, contact activated) were essentially identical. In the absence of heparin, however, the plasma clotting time was between three and four minutes, while in the presence of heparin, the clotting time was approximately 40 minutes. More factor IXa was inhibited by antithrombin III in the presence of heparin than in its absence, but factor IXa levels sufficient for factor X activation appeared to be present in the heparinized plasma. Neither an increase in factor Xa nor a decrease in factor X was detected, however, in heparinized plasma. We conclude that the step in the intrinsic pathway of coagulation that is inhibited in the presence of heparin is at the level of factor X activation.


Blood ◽  
1979 ◽  
Vol 54 (5) ◽  
pp. 1028-1038 ◽  
Author(s):  
MB Hultin

Abstract The precise quantitation of activated factors in human factor IX concentrates has been accomplished with the use of recently developed, specific assays for factors IXa, Xa, and thrombin. The assay for factor IXa, which measures the initial rate of 3H-factor-X activation, was shown to be specific for factor IXa in the concentrates. Activated factor IX concentrates contained 1.0–2.3 microgram/ml of factor IXa; whereas the assays of unactivated concentrates were negative (less than 0.2 microgram/ml). The assays of factor Xa and thrombin, which measure the initial rate of p-nitroaniline release from S-2222 and S-2238, respectively, showed similar small amounts of factor Xa (4–34 ng/ml) and thrombin (12–76 ng/ml) in the activated and unactivated concentrates. The nonactivated partial thromboplastin time of the concentrates correlated significantly with the factor IXa content, but not with factor Xa or thrombin. Antithrombin III antigen in 3 of 4 concentrates was several-fold higher than antithrombin III activity, suggesting the presence of antithrombin III complexed with activated factors. These results support the hypothesis that the degree of activation of factor IX concentrates is related primarily to the concentration of factor IXa, which may be responsible for the thrombogenicity of these concentrates in some clinical settings.


Sign in / Sign up

Export Citation Format

Share Document