Percutaneous Tibial Fracture Reduction Using Computed Tomography Imaging, Computer Modelling and 3D Printed Alignment Constructs: A Cadaveric Study

2019 ◽  
Vol 32 (02) ◽  
pp. 139-148 ◽  
Author(s):  
John Davies ◽  
Albert Lynch

Objective The main aim of this study was to evaluate a percutaneous method of bone alignment using a diaphyseal tibial fracture model. Materials and Methods Mid-shaft diaphyseal fractures were created in 12 large-breed canine tibiae. Interaction pins were inserted into the proximal and distal bone segments. Computed tomography scans of the fractured tibiae and pins were imported into three-dimensional (3D) modelling software and the fractures were virtually reduced. A multi-component 3D printed alignment jig was created that encompassed the pins in their aligned configuration. Orthogonal radiographs were taken after alignment jig application. Intact and post-alignment tibial lengths and joint angles were compared. Rotational alignment was subjectively evaluated. Results Post-alignment tibial lengths differed on the mediolateral and craniocaudal radiographs by an average of 1.55 and 1.43% respectively. Post-alignment mechanical medial proximal tibial angle, mechanical medial distal tibial angle and mechanical caudal proximal tibial angle had an average difference of 1.67°, 1.92° and 2.17° respectively. Differences in tibial length and joint angles were not significant (p > 0.05). Clinical Significance While in vivo evaluation is necessary, this technique to align diaphyseal fractures percutaneously using computer modelling and 3D printing is technically feasible and may facilitate the clinical use of minimally invasive osteosynthesis techniques.

Materials ◽  
2018 ◽  
Vol 11 (2) ◽  
pp. 238 ◽  
Author(s):  
Su Park ◽  
Hyo-Jung Lee ◽  
Keun-Suh Kim ◽  
Sang Lee ◽  
Jung-Tae Lee ◽  
...  

2021 ◽  
Vol 7 (4) ◽  
pp. 444
Author(s):  
Pei Zhuang ◽  
Yi-Hua Chiang ◽  
Maria Serafim Fernanda ◽  
Mei He

Cancer still ranks as a leading cause of mortality worldwide. Although considerable efforts have been dedicated to anticancer therapeutics, progress is still slow, partially due to the absence of robust prediction models. Multicellular tumor spheroids, as a major three-dimensional (3D) culture model exhibiting features of avascular tumors, gained great popularity in pathophysiological studies and high throughput drug screening. However, limited control over cellular and structural organization is still the key challenge in achieving in vivo like tissue microenvironment. 3D bioprinting has made great strides toward tissue/organ mimicry, due to its outstanding spatial control through combining both cells and materials, scalability, and reproducibility. Prospectively, harnessing the power from both 3D bioprinting and multicellular spheroids would likely generate more faithful tumor models and advance our understanding on the mechanism of tumor progression. In this review, the emerging concept on using spheroids as a building block in 3D bioprinting for tumor modeling is illustrated. We begin by describing the context of the tumor microenvironment, followed by an introduction of various methodologies for tumor spheroid formation, with their specific merits and drawbacks. Thereafter, we present an overview of existing 3D printed tumor models using spheroids as a focus. We provide a compilation of the contemporary literature sources and summarize the overall advancements in technology and possibilities of using spheroids as building blocks in 3D printed tissue modeling, with a particular emphasis on tumor models. Future outlooks about the wonderous advancements of integrated 3D spheroidal printing conclude this review.


Nanomaterials ◽  
2017 ◽  
Vol 7 (2) ◽  
pp. 46 ◽  
Author(s):  
Manabu Tanaka ◽  
Yoshinori Sato ◽  
Mei Zhang ◽  
Hisao Haniu ◽  
Masanori Okamoto ◽  
...  

2014 ◽  
Vol 23 (12) ◽  
pp. 1822-1830 ◽  
Author(s):  
Konstantinos Ditsios ◽  
Achilleas Boutsiadis ◽  
Dorothea Kapoukranidou ◽  
Athanasios Chatzisotiriou ◽  
Ioannis Kalpidis ◽  
...  

2018 ◽  
Vol 100 (17) ◽  
pp. e113 ◽  
Author(s):  
Shingo Abe ◽  
Tsuyoshi Murase ◽  
Kunihiro Oka ◽  
Atsuo Shigi ◽  
Hiroyuki Tanaka ◽  
...  

2011 ◽  
Vol 38 (6Part31) ◽  
pp. 3797-3797
Author(s):  
J C Ramirez-Giraldo ◽  
S M Jorgensen ◽  
E L Ritman ◽  
B Kantor ◽  
C H. McCollough

2005 ◽  
Vol 98 (5) ◽  
pp. 1603-1606 ◽  
Author(s):  
Robert H. Brown ◽  
William Wizeman ◽  
Christopher Danek ◽  
Wayne Mitzner

A recent study has reported that the application of thermal energy delivered through a bronchoscope (bronchial thermoplasty) impairs the ability of airway smooth muscle to shorten in response to methacholine (MCh)(Danek CJ, Lombard CM, Dungworth DL, Cox PG, Miller JD, Biggs MJ, Keast TM, Loomas BE, Wizeman WJ, Hogg JC, and Leff AR. J Appl Physiol 97: 1946–1953, 2004). If such a technique is successful, it has the potential to serve as a therapy to attenuate airway narrowing in asthmatic subjects regardless of the initiating cause that stimulates the smooth muscle. In the present study, we have applied high-resolution computed tomography to accurately quantify the changes in airway area before and after a standard MCh aerosol challenge in airways treated with bronchial thermoplasty. We studied a total of 193 airways ranging from 2 to 15 mm in six dogs. These were divided into treated and control populations. The MCh dose-response curves in untreated airways and soon-to-be-treated airways were superimposable. In contrast, the dose-response curves in treated airways were shifted upward at all points, showing a significantly decreased sensitivity to MCh at both 2 and 4 wk posttreatment. These results thus show that treated airways have significantly increased luminal area at any dose of inhaled MCh compared with untreated airways. The work in this study thus supports the underlying concept that impairing the smooth muscle may be an effective treatment for asthma.


2012 ◽  
Vol 45 ◽  
pp. S281
Author(s):  
Keisuke Akiyama ◽  
Takashi Sakai ◽  
Junichiro Koyanagi ◽  
Hideki Yoshikawa ◽  
Kazuomi Sugamoto

2005 ◽  
Vol 119 (9) ◽  
pp. 693-698 ◽  
Author(s):  
Beom-Cho Jun ◽  
Sun-Wha Song ◽  
Ju-Eun Cho ◽  
Chan-Soon Park ◽  
Dong-Hee Lee ◽  
...  

The aim of this study was to investigate the usefulness of a three-dimensional (3D) reconstruction of computed tomography (CT) images in determining the anatomy and topographic relationship between various important structures. Using 40 ears from 20 patients with various otological diseases, a 3D reconstruction based on the image data from spiral high-resolution CT was performed by segmentation, volume-rendering and surface-rendering algorithms on a personal computer. The 3D display of the middle and inner ear structures was demonstrated in detail. Computer-assisted measurements, many of which could not be easily measured in vivo, of the reconstructed structures provided accurate anatomic details that improved the surgeon’s understanding of spatial relationships. A 3D reconstruction of temporal bone CT might be useful for education and increasing understanding of the anatomical structures of the temporal bone. However, it will be necessary to confirm the correlation between the 3D reconstructed images and histological sections through a validation study.


Sign in / Sign up

Export Citation Format

Share Document