scholarly journals Difference in Thrombolytic Effect between Higher and Lower Molecular Weight Forms of Urokinase

1977 ◽  
Author(s):  
T. Suyama ◽  
M. Nishida ◽  
Y. Iga ◽  
R. Naito

Urokinase (UK) from human urine has been widely used for thrombolytic therapy in Japan. However, commercially available preparations are not identical but consist of mainly two forms of UK with higher and lower molecular weight (H-UK and L-UK) . An attempt was made in this report to compare thrombolytic activity of H-UK with that of L-UK on artificial thrombi produced from human blood by a modification of Chandler’s loop method, which was somehow comparable to the situation in vivo. Two active forms of UK were purified from crude preparation by gel filtration. The approximate molecular weight of the H-UK was 54,000 and of the L-UK 34,000. The potency of UK was determined by “two-stage lysis time method” and expressed by International unit(lU). Thrombolytic activity measured by Chandler’s method was calculated as % lysis of the control thrombus that was formed in the abscence of UK.As a result, thrombus-dissolution time of H-UK was much shorter than that of L-UK. Furthermore, concentration of H-UK (IU/ml blood) necessary to induce 50% lysis was approximately one half lower than that of L-UK. The similiar results were obtained on artificial thrombi from the blood of dog, rat and rabbit. The data suggest that H-UK seems to be more effective on treatment of thromboembolicdisorders as compared to L-UK in terms of the same IU basis.

1980 ◽  
Vol 44 (03) ◽  
pp. 130-134 ◽  
Author(s):  
E B Tsianos ◽  
N E Stathakis

SummaryThe presence of soluble fibrin complexes (SFC) measured by gel filtration of plasma on 4% agarose columns, fibrinogen heterogeneity on 3.5% SDS-polyacrylamide gels and the concentrations of several plasma proteins were evaluated in 39 patients with diabetes mellitus (DM) and 19 matched control subjects. A small but significant increase of SFC was found in DM (p<0.01). On individual basis 51.2% of the patients had increased SFC (>M + 2 SD of the controls). Polyacrylamide gel electrophoresis of the SFC showed no evidence of cross-linking or proteolysis. Plasma clots formed in the presence of EDTA and trasylol were analysed in SDS-polyacrylamide gels in a normal and two lower molecular weight fibrin bands (band I, II, III). The percentage of band I fibrinogen was in diabetics (65.3 ± 4.7%) lower than that of the controls (71.8 ± 4.5%) (p < 0.01). Fibrinogen levels, antithrombin III, α1-antitrypsin, α2-macroglobulin and plasminogen were significantly increased in DM. We suggest that in DM there is an enhancement of intravascular fibrin formation and accelerated fibrinogen degradation to lower molecular weight forms.


1981 ◽  
Vol 46 (03) ◽  
pp. 612-616 ◽  
Author(s):  
U Schmitz-Huebner ◽  
L Balleisen ◽  
F Asbeck ◽  
J van de Loo

SummaryHigh and low molecular weight heparin fractions obtained by gel filtration chromatography of sodium mucosal heparin were injected subcutaneously into six healthy volunteers and compared with the unfractionated substance in a cross-over trial. Equal doses of 5,000 U were administered twice daily over a period of three days and heparin activity was repeatedly controlled before and 2, 4, 8 hrs after injection by means of the APTT, the anti-Xa clotting test and a chromogenic substrate assay. In addition, the in vivo effect of subcutaneously administered fractionated heparin on platelet function was examined on three of the volunteers. The results show that s.c. injections of the low molecular weight fraction induced markedly higher anti-Xa activity than injections of the other preparations. At the same time, APTT results did not significantly differ. Unfractionated heparin and the high molecular weight fraction enhanced ADP-induced platelet aggregation and collagen-mediated MDA production, while the low molecular weight fraction hardly affected these assays, but potently inhibited thrombin-induced MDA production. All heparin preparations stimulated the release of platelet Factor 4 in plasma. During the three-day treatment periods, no side-effects and no significant changes in the response to heparin injections were detected.


1985 ◽  
Vol 5 (5) ◽  
pp. 1093-1099
Author(s):  
R J Schmidt ◽  
N W Gillham ◽  
J E Boynton

In pulse-chase experiments in which log-phase cells of Chlamydomonas reinhardtii were labeled in vivo for 5 min with H2(35)SO4, fluorographs of immunoprecipitates from whole cell extracts revealed that chloroplast ribosomal proteins L-2, L-6, L-21, and L-29, which are made in the cytosol and imported, appeared in their mature forms. However, in the case of chloroplast ribosomal protein L-18, which is also made in the cytoplasm and imported, a prominent precursor with an apparent molecular weight of 17,000 was found at the end of a 5-min pulse. This precursor was processed to its mature size (apparent molecular weight of 15,500) within the first 5 min of the subsequent chase. As determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the precursor to L-18 formed in vivo was 1.5 kilodaltons smaller than the primary product detected in translations of Chlamydomonas polyadenylated RNA in vitro. Upon a 10-min incubation with a postribosomal supernatant from Chlamydomonas, the 18,500-dalton precursor detected in vitro could be partially converted into a polypeptide that comigrated with the 17,000-dalton precursor detected in extracts of cells labeled in vivo. Under conditions in which the total amounts of chloroplast proteins had been reduced and cells were made to synthesize ribosomes rapidly, the apparent half-life of the 17,000-dalton precursor was extended over that seen in log-phase cells. When chloroplast protein synthesis was inhibited with lincomycin for 3 h before labeling under these conditions, the 17,000-dalton L-18 precursor but not the mature form was found, and the precursor was slowly degraded during a 60-min chase. When cells were placed in the dark for 3 h before labeling, processing of this precursor to the mature form appeared unaffected, but the chloroplast-synthesized ribosomal protein L-26 was detected, indicating that chloroplast protein synthesis was still occurring. We interpret these results to indicate that the maturation of protein L-18 in vivo involves at least two processing steps, one of which depends on a protein made on chloroplast ribosomes.


1966 ◽  
Vol 44 (5) ◽  
pp. 849-859 ◽  
Author(s):  
Sumner M. Robinson ◽  
David A. Hurwitz ◽  
Robert Louis-Ferdinand ◽  
William F. Blatt

A technique is described for hemodialysis of either anesthetized or non-restrained rats. In the apparatus the dialysis plates of an autoanalyzer system are used with only minor modification. The efficiency of this method has been evaluated with regard to the clearance of saccharides, both in vitro and in vivo, as well as the extraction of nitrogenous low molecular weight moieties from circulating blood. Approximately 50% of the dialyzable material was obtained in a 1-hour dialysis. Further fractionation of the dialyzate was accomplished by gel filtration (Sephadex G-25).


1998 ◽  
Vol 66 (9) ◽  
pp. 4374-4381 ◽  
Author(s):  
John C. McMichael ◽  
Michael J. Fiske ◽  
Ross A. Fredenburg ◽  
Deb N. Chakravarti ◽  
Karl R. VanDerMeid ◽  
...  

ABSTRACT The UspA1 and UspA2 proteins of Moraxella catarrhalisare potential vaccine candidates for preventing disease caused by this organism. We have characterized both proteins and evaluated their vaccine potential using both in vitro and in vivo assays. Both proteins were purified from the O35E isolate by Triton X-100 extraction, followed by ion-exchange and hydroxyapatite chromatography. Analysis of the sequences of internal peptides, prepared by enzymatic and chemical cleavage of the proteins, revealed that UspA1 and UspA2 exhibited distinct structural differences but shared a common sequence including an epitope recognized by the monoclonal antibody 17C7. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), purified UspA1 exhibited a molecular weight of approximately 350,000 when unheated and a molecular weight of 100,000 after being heated for 10 min at 100°C. In contrast, purified UspA2 exhibited an apparent molecular weight of 240,000 by SDS-PAGE that did not change with the length of time of heating. Their sizes as determined by gel filtration were 1,150,000 and 830,000 for UspA1 and UspA2, respectively. Preliminary results indicate the proteins have separate functions in bacterial pathogenesis. Purified UspA1 was found to bind HEp-2 cells, and sera against UspA1, but not against UspA2, blocked binding of the O35E isolate to the HEp-2 cells. UspA1 also bound fibronectin and appears to have a role in bacterial attachment. Purified UspA2, however, did not bind fibronectin but had an affinity for vitronectin. Both proteins elicited bactericidal antibodies in mice to homologous and heterologous disease isolates. Finally, mice immunized with each of the proteins, followed by pulmonary challenge with either the homologous or a heterologous isolate, cleared the bacteria more rapidly than mock-immunized mice. These results suggest that UspA1 and UspA2 serve different virulence functions and that both are promising vaccine candidates.


1983 ◽  
Vol 59 (1) ◽  
pp. 81-103 ◽  
Author(s):  
R. Crossley ◽  
D.V. Holberton

Proteins from the axonemes and disc cytoskeleton of Giardia lamblia have been examined by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. In addition to tubulin and the 30 X 10(3) molecular weight disc protein, at least 18 minor components copurify with the two major proteins in Triton-insoluble structures. The most prominent minor bands have the apparent molecular weights of 110 X 10(3), 95 X 10(3) and 81 X 10(3). Protein of 30 X 10(3) molecular weight accounts for about 20% of organelle protein on gels. In continuous 25 mM-Tris-glycine buffer it migrates mostly as a close-spaced doublet of polypeptides, which are here given the name giardins. Giardia tubulin and giardin have been purified by gel filtration chromatography in the presence of sodium dodecyl sulphate. Well-separated fractions were obtained that could be further characterized. Both proteins are heterogeneous when examined by isoelectric focusing. Five tubulin chains were detected by PAGE Blue 83 dye-binding after focusing in a broad-range ampholyte gel. Giardin is slightly less acidic than tubulin. On gels it splits into four major and four minor chains with isoelectric points in the pI range from 5.8 to 6.2. The amino acid composition of the giardin fraction has been determined, and compared to Giardia tubulin and a rat brain tubulin standard. Giardins are rich in helix-forming residues, particularly leucine. They have a low content of proline and glycine; therefore they may have extensive alpha-helical regions and be rod-shaped. As integral proteins of disc microribbons, giardins in vivo associate closely with tubulin. The properties of giardins indicate that in a number of respects - molecular size, charge, stoichiometry - their structural interaction with tubulin assemblies will be different from other tubulin-accessory protein copolymers studied in vitro.


1977 ◽  
Author(s):  
K. A. Rickard ◽  
T. Exner ◽  
H. Kronenberg

Gel filtration of human plasma cryoprecipitate on Sepharose 2B indicated the molecular weight of factor VIII coagulant activity (VIIIc) to be significantly greater than that found in antihaemophilic concentrate. Polyethylene glycol at 3% concentration precipitated approximately half of the VIIIc from cryoprecipitate. This activity eluted as high molecular weight material on gel filtration. The addition of more polyethylene glycol to a concentration of 8% precipitated most of the remaining VIIIc from cryoprecipitate. This activity appeared to be of significantly lower molecular weight, approximately corresponding in elution volume to that observed for antihaemophilic concentrate. The possibility that an antibody to VIIIc generated in a patient treated with cryoprecipitate might be directed against the higher molecular weight form of factor VIII was investigated. However, no significant differences between the higher and lower molecular weight forms of factor VIII either in stability or in reactivity with human antibody to factor VIII were found.


1981 ◽  
Author(s):  
U Schmitz-Huebner ◽  
L Balleisen ◽  
F Asbeck ◽  
J van de Loo

Recent investigations suggest that low molecular weight heparin may have advantages over conventional heparin with regard to the prevention of venous thrombosis and haemorrhagic side effects.High (HMW) and low (LMW) molecular weight heparin fractions with mean MWs of 16,000 and 8,800 respectively, obtained by gel filtration chromatography of sodium mucosal heparin (B. Braun Melsungen), were injected subcutaneously into six volunteers and compared with the unfractionated substance in a cross-over trial. Doses of 5,000 U were administered twice daily over a period of three days and heparin activity was controlled before injection and 2,4,8 hours afterwards by means of the APTT, the anti-Xa clotting test and a chromogenic substrate assay. In addition, the in vivo effect of fractionated heparin on platelet function was examined. The results show that the LMW fraction induced markedly higher anti-Xa activity than the other preparations. At the same time, APTT results did not significantly differ. Unfractionated heparin and the HMW fraction enhanced ADP-induced platelet aggregation and collagen-mediated MDA-production, while the LMW fraction hardly affected these assays, but potently inhibited thrombin-induced MDA production. All heparin preparations stimulated the release of PF IV, whereas the serotonin content of platelets determined at the same time increased.It is concluded that s.c. injections of LMW heparin induce relatively high levels of anti-Xa activity without leading to sensitive platelet activation or to major effects on overall clotting tests.


1977 ◽  
Author(s):  
R. von Hugo ◽  
R. Hafter ◽  
A. Stemberger ◽  
H. Graeff

Crosslinked high molecular weight derivatives of fibrin (fibrinoligomers) were observed during intravascular coagulation. It was the purpose of this study to investigate the complex formation of fibrin oligomers with fibrinogen and fibrinmonomer. Fibrinogen coupled to agarose (Fg-ag) as well as fi-brinmonomer coupled to agarose (Fm-ag) was used as substrate. Soluble oligomers of fibrin were produced by incubating fibrinogen with thrombin, calcium-chloride, cystein and F XIII. They were separated from fibrinogen by gel filtration. Γ-dimers were demonstrated in fractions from the void volume and the shoulder prior to the fibrinogen peak. These fractions were subjected to affinity chromatography. Crosslinked oligomers of fibrin were not adsorbed on Fg-ag, yet adsorption occured on Fm-ag. This indicates that fibrin oligomers have no affinity to fibrinogen, yet readily form complexes with fibrin. This could mean that in vivo they compete with fibrinogen for the fibrinmonomer part of soluble fibrin monomer complexes, and hence have a tendency to increase in size.


1988 ◽  
Vol 2 (1) ◽  
pp. 7-11 ◽  
Author(s):  
T. Nagakura ◽  
T. Onda ◽  
Y. likura ◽  
T. Endo ◽  
H. Nagakura ◽  
...  

High molecular weight neutrophil chemotactic activity has been identified in resected human nasal polyps, inferior turbinates, and nasal secretions following antigen challenge. The estimated molecular weight, by gel filtration chromatography, was approximately 600,000. However, a heterogeneity of molecular weight in some patients was recognized. Our results suggest a possible role for high molecular weight-neutrophil chemotactic activity in the pathogenesis of hypersensitivity in the human nasal cavity.


Sign in / Sign up

Export Citation Format

Share Document