The D Dimer-E Complex and Its Aggregates in Crosslinked Fibrin Digests

1979 ◽  
Author(s):  
P.J. Gaffney ◽  
Franklin Joe

In vitro data have indicated that plasmin-mediated lysis of crosslinked (XL) fibrin in vivo yields only one distinct high molecular weight complex, which has the empirical formula, 2D-E. We have compared the compositions of lysates obtained from I125 labelled and unlabelled fibrin clots in buffer, human and animal sera, and trasylol, using conventional immunological, chromatographic and electrophoretic techniques. Both trasylol (10 KI units/ml) and various animal sera stabilised the D dimer-E complex following lysis of XL fibrin and only in buffer were free D dimer and E fragments observed. The D dimer-E complex was isolated by affinity chromatography and the expect ed polypeptide chain composition, including the crosslinked γ chain remnants, was confiimed. By combining various molar ratios of D dimer and E the expected equimolar nature of the complex was confirmed and the association sites between D dimer and E may be synonymous with the polymerization sites already shown to exist in the 0 and E domains of fibrinogen. Using I125 labelled fibrin clots, covalently linked high molecular weight complexes (up to 1 x 106Mv) were observed during in vitro lysis with plasmin. At least one of these was identified as a crosslinked γ dimer while other larger fragments may be covalently linked complexes of the “D dimer-E subunit”. A hypothesis for XL fibrin lysis in vivo is proposed which complements accepted ideas on fibrin clot formation.

2001 ◽  
Vol 127 (3) ◽  
pp. 1243-1255 ◽  
Author(s):  
Yong-Woo Kim ◽  
Dae-Sup Park ◽  
Seung-Cheol Park ◽  
Sung Hee Kim ◽  
Gang-Won Cheong ◽  
...  

2001 ◽  
Vol 85 (04) ◽  
pp. 671-678 ◽  
Author(s):  
Sybille Zips ◽  
Hanimsah Ergül ◽  
Dieter Heene ◽  
Carl-Erik Dempfle ◽  

SummaryAlthough D-dimer has gained widespread clinical use as a parameter for detection of in vivo fibrin formation, the issue of standardization of D-dimer assays remains to be resolved. The FACT study was performed to generate basic data for development of calibrators and standard preparations.A set of 86 samples, including plasma samples from patients with DIC, DVT, and other clinical conditions, serial dilutions of pooled plasma samples, and plasma samples containing fibrinogen- and fibrin derivatives, were distributed to 12 manufacturers of D-dimer assays.D-dimer assays differ concerning specificity for crosslinked fibrin, and preference for either high molecular weight fibrin complexes, or low molecular weight fibrin degradation products. Terminal plasmin digests of fibrin clots for calibration produce aberrant results in some assays, especially those with preference for high molecular weight crosslinked fibrin derivatives. The best conformity is achieved by the use of pooled plasma samples from patients with high levels of D-dimer antigen in plasma. In vitro preparations containing a comparable composition of fibrin derivatives to clinical plasma samples may also serve as reference material.


2019 ◽  
Vol 26 (30) ◽  
pp. 5609-5624
Author(s):  
Dijana Saftić ◽  
Željka Ban ◽  
Josipa Matić ◽  
Lidija-Marija Tumirv ◽  
Ivo Piantanida

: Among the most intensively studied classes of small molecules (molecular weight < 650) in biomedical research are small molecules that non-covalently bind to DNA/RNA, and another intensively studied class is nucleobase derivatives. Both classes have been intensively elaborated in many books and reviews. However, conjugates consisting of DNA/RNA binder covalently linked to nucleobase are much less studied and have not been reviewed in the last two decades. Therefore, this review summarized reports on the design of classical DNA/RNA binder – nucleobase conjugates, as well as data about their interactions with various DNA or RNA targets, and even in some cases protein targets are involved. According to these data, the most important structural aspects of selective or even specific recognition between small molecule and target are proposed, and where possible related biochemical and biomedical aspects were discussed. The general conclusion is that this, rather new class of molecules showed an amazing set of recognition tools for numerous DNA or RNA targets in the last two decades, as well as few intriguing in vitro and in vivo selectivities. Several lead research lines show promising advancements toward either novel, highly selective markers or bioactive, potentially druggable molecules.


1988 ◽  
Vol 2 (1) ◽  
pp. 7-11 ◽  
Author(s):  
T. Nagakura ◽  
T. Onda ◽  
Y. likura ◽  
T. Endo ◽  
H. Nagakura ◽  
...  

High molecular weight neutrophil chemotactic activity has been identified in resected human nasal polyps, inferior turbinates, and nasal secretions following antigen challenge. The estimated molecular weight, by gel filtration chromatography, was approximately 600,000. However, a heterogeneity of molecular weight in some patients was recognized. Our results suggest a possible role for high molecular weight-neutrophil chemotactic activity in the pathogenesis of hypersensitivity in the human nasal cavity.


Foods ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 68 ◽  
Author(s):  
Silvia Tores de la Cruz ◽  
Amaia Iriondo-DeHond ◽  
Teresa Herrera ◽  
Yolanda Lopez-Tofiño ◽  
Carlos Galvez-Robleño ◽  
...  

Melanoidins present in coffee silverskin, the only by-product of the roasting process, are formed via the Maillard reaction. The exact structure, biological properties, and mechanism of action of coffee silverskin melanoidins, remain unknown. This research work aimed to contribute to this novel knowledge. To achieve this goal, melanoidins were obtained from an aqueous extract of Arabica coffee silverskin (WO2013004873A1) and was isolated through ultrafiltration (>10 kDa). The isolation protocol was optimized and the chemical composition of the high molecular weight fraction (>10 kDa) was evaluated, by analyzing the content of protein, caffeine, chlorogenic acid, and the total dietary fiber. In addition, the structural analysis was performed by infrared spectroscopy. Antioxidant properties were studied in vitro and the fiber effect was studied in vivo, in healthy male Wistar rats. Melanoidins were administered to animals in the drinking water at a dose of 1 g/kg. At the fourth week of treatment, gastrointestinal motility was evaluated through non-invasive radiographic means. In conclusion, the isolation process was effective in obtaining a high molecular weight fraction, composed mainly of dietary fiber, including melanoidins, with in vitro antioxidant capacity and in vivo dietary fiber effects.


1998 ◽  
Vol 95 (16) ◽  
pp. 9319-9324 ◽  
Author(s):  
Frank S. Lee ◽  
Robert T. Peters ◽  
Luan C. Dang ◽  
Tom Maniatis

A critical step in the signal-induced activation of the transcription factor NF-κB is the site-specific phosphorylation of its inhibitor, IκB, that targets the latter for degradation by the ubiquitin–proteasome pathway. We have previously shown that mitogen-activated protein kinase/ERK kinase kinase 1 (MEKK1) can induce both this site-specific phosphorylation of IκBα at Ser-32 and Ser-36 in vivo and the activity of a high molecular weight IκB kinase complex in vitro. Subsequently, others have identified two proteins, IκB kinase α (IKK-α) and IκB kinase β (IKK-β), that are present in a tumor necrosis factor α-inducible, high molecular weight IκB kinase complex. These kinases are believed to directly phosphorylate IκB based on the examination of the kinase activities of IKK immunoprecipitates, but more rigorous proof of this has yet to be demonstrated. We show herein that recombinant IKK-α and IKK-β can, in fact, directly phosphorylate IκBα at Ser-32 and Ser-36, as well as homologous residues in IκBβ in vitro, and thus are bona fide IκB kinases. We also show that MEKK1 can induce the activation of both IKK-α and IKK-β in vivo. Finally, we show that IKK-α is present in the MEKK1-inducible, high molecular weight IκB kinase complex and treatment of this complex with MEKK1 induces phosphorylation of IKK-α in vitro. We conclude that IKK-α and IKK-β can mediate the NF-κB-inducing activity of MEKK1.


1974 ◽  
Vol 62 (2) ◽  
pp. 355-361 ◽  
Author(s):  
JENNIFER M. DEHNEL ◽  
P. D. McCONAGHEY ◽  
M. J. O. FRANCIS

SUMMARY Plasma somatomedin is the intermediary through which growth hormone (GH) exerts its effects on the growing skeleton. Somatomedin activity may be produced in vitro by perfusion of the liver and kidneys of rats with Waymouth's medium containing GH. The relationship between the activity of plasma somatomedin and somatomedin of hepatic and renal origin has yet to be clarified. Somatomedin from plasma can be separated into active fractions of both high and low molecular weight. Similarly, ultrafiltration of medium containing somatomedin of hepatic origin indicates the existence of two active fractions, one of high molecular weight (greater than 50000) and one of low molecular weight (less than 1000). The latter can be attributed to the release of amino acids, such as serine and glutamine, by the perfused tissue. The high molecular weight fraction is believed to represent GH-dependent somatomedin. Fractions that inhibit production of cartilage matrix are present in liver perfusates as well as in plasma. These results provide further evidence that the liver is a source of GH-dependent somatomedin in vivo. Furthermore, cartilage growth may be controlled not only by the GH-stimulated release of somatomedin by the liver, but also by its release of acid-labile somatomedin inhibitors.


Sign in / Sign up

Export Citation Format

Share Document