scholarly journals An Assessment of the Bioactivity of Coffee Silverskin Melanoidins

Foods ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 68 ◽  
Author(s):  
Silvia Tores de la Cruz ◽  
Amaia Iriondo-DeHond ◽  
Teresa Herrera ◽  
Yolanda Lopez-Tofiño ◽  
Carlos Galvez-Robleño ◽  
...  

Melanoidins present in coffee silverskin, the only by-product of the roasting process, are formed via the Maillard reaction. The exact structure, biological properties, and mechanism of action of coffee silverskin melanoidins, remain unknown. This research work aimed to contribute to this novel knowledge. To achieve this goal, melanoidins were obtained from an aqueous extract of Arabica coffee silverskin (WO2013004873A1) and was isolated through ultrafiltration (>10 kDa). The isolation protocol was optimized and the chemical composition of the high molecular weight fraction (>10 kDa) was evaluated, by analyzing the content of protein, caffeine, chlorogenic acid, and the total dietary fiber. In addition, the structural analysis was performed by infrared spectroscopy. Antioxidant properties were studied in vitro and the fiber effect was studied in vivo, in healthy male Wistar rats. Melanoidins were administered to animals in the drinking water at a dose of 1 g/kg. At the fourth week of treatment, gastrointestinal motility was evaluated through non-invasive radiographic means. In conclusion, the isolation process was effective in obtaining a high molecular weight fraction, composed mainly of dietary fiber, including melanoidins, with in vitro antioxidant capacity and in vivo dietary fiber effects.

1974 ◽  
Vol 62 (2) ◽  
pp. 355-361 ◽  
Author(s):  
JENNIFER M. DEHNEL ◽  
P. D. McCONAGHEY ◽  
M. J. O. FRANCIS

SUMMARY Plasma somatomedin is the intermediary through which growth hormone (GH) exerts its effects on the growing skeleton. Somatomedin activity may be produced in vitro by perfusion of the liver and kidneys of rats with Waymouth's medium containing GH. The relationship between the activity of plasma somatomedin and somatomedin of hepatic and renal origin has yet to be clarified. Somatomedin from plasma can be separated into active fractions of both high and low molecular weight. Similarly, ultrafiltration of medium containing somatomedin of hepatic origin indicates the existence of two active fractions, one of high molecular weight (greater than 50000) and one of low molecular weight (less than 1000). The latter can be attributed to the release of amino acids, such as serine and glutamine, by the perfused tissue. The high molecular weight fraction is believed to represent GH-dependent somatomedin. Fractions that inhibit production of cartilage matrix are present in liver perfusates as well as in plasma. These results provide further evidence that the liver is a source of GH-dependent somatomedin in vivo. Furthermore, cartilage growth may be controlled not only by the GH-stimulated release of somatomedin by the liver, but also by its release of acid-labile somatomedin inhibitors.


1985 ◽  
Vol 101 (3) ◽  
pp. 802-813 ◽  
Author(s):  
N Lieska ◽  
H Y Yang ◽  
R D Goldman

IFAP-300K is a 300,000-mol-wt intermediate filament-associated protein previously identified in the baby hamster kidney fibroblastic cell line (BHK-21) by a monoclonal antibody (Yang H.-Y., N. Lieska, A. E. Goldman, and R. D. Goldman, 1985, J. Cell Biol., 100: 620-631). In the present study, this molecule was purified from the high salt/detergent-insoluble cytoskeletal preparation of these cells. Gel filtration on Sephacryl S-400 in the presence of 7.2 M urea allowed separation of the high molecular weight fraction from the structural intermediate filament (IF) subunits desmin and vimentin, designated 54K and 55K, respectively, and other low molecular weight polypeptides. DE-52 cellulose chromatography of the high molecular weight fraction using a linear NaCl gradient in 8 M urea yielded a pure 300,000-mol-wt species which was confirmed to be IFAP-300K by immunological and peptide mapping criteria. Two-dimensional PAGE of native BHK IF preparations followed by immunoblot analysis demonstrated the inability of the IFAP-300K-immunoreactive material to enter the first dimensional gel except as a 200,000-mol-wt doublet which presumably represented a major proteolytic derivative of IFAP-300K. The molecule's pl of 5.35, as determined by chromatofocusing, and its amino acid composition were extremely similar to those of BHK cell vimentin/desmin despite their non-identity. Ultrastructurally, IFAP-300K preparations in low salt buffers existed as particles composed of one or two elliptical units measuring 16 X 20 nm. In physiological salt buffers, the predominant entities were large, elongated aggregates of the elliptical units, which were able to be decorated by using the immunogold technique with monoclonal anti-IFAP-300K. Compared with the morphology of homopolymer vimentin IF, in vitro recombination studies using column-purified vimentin and IFAP-300K demonstrated the additional presence of aggregates similar in appearance to IFAP-300K at points of contact between IFs. Antibody decoration and immunogold labeling of these recombined preparations using rabbit antidesmin/vimentin and monoclonal anti-IFAP-300K confirmed the identity of the inter-filament, amorphous material as IFAP-300K. The presence of IFAP-300K at many points of intersection and lateral contact between IFs, as well as at apparent inter-filament "bridges," in these recombined specimens was identical to that seen both in situ and in native IF preparations. No such co-sedimentation was found in vitro between actin and IFAP-300K. No effects of IFAP-300K upon the kinetics of IF polymerization were detected by turbidimetric measurements.


1984 ◽  
Vol 23 (02) ◽  
pp. 59-61 ◽  
Author(s):  
M. C. Crone ◽  
P. Thouvenot ◽  
F. Brunotte ◽  
C. Marchai ◽  
J. Robert ◽  
...  

SummaryBlood plasma from tumor-bearing rats was incubated with 67Ga-citrate, and two fractions of high molecular weight (proteins) and low molecular weight were isolated by dialysis and by gel-filtration chromatography. Both fractions showed a different in vivo uptake by DS-sarcoma-bearing animals, the high molecular weight fraction being accumulated to a lesser extent. Compared to 67Ga-citrate the low molecular weight fraction showed a different uptake which for most tissues was significatively higher. This behavior suggests the presence of 67Ga in chemical forms other than citrate in the low molecular weight fraction. The lower uptake of the blood protein fraction is discussed.


1993 ◽  
Vol 70 (06) ◽  
pp. 0978-0983 ◽  
Author(s):  
Edelmiro Regano ◽  
Virtudes Vila ◽  
Justo Aznar ◽  
Victoria Lacueva ◽  
Vicenta Martinez ◽  
...  

SummaryIn 15 patients with acute myocardial infarction who received 1,500,000 U of streptokinase, the gradual appearance of newly synthesized fibrinogen and the fibrinopeptide release during the first 35 h after SK treatment were evaluated. At 5 h the fibrinogen circulating in plasma was observed as the high molecular weight fraction (HMW-Fg). The concentration of HMW-Fg increased continuously, and at 20 h reached values higher than those obtained from normal plasma. HMW-Fg represented about 95% of the total fibrinogen during the first 35 h. The degree of phosphorylation of patient fibrinogen increased from 30% before treatment to 65% during the first 5 h, and then slowly declined to 50% at 35 h.The early rates of fibrinopeptide A (FPA) and phosphorylated fibrinopeptide A (FPAp) release are higher in patient fibrinogen than in isolated normal HMW-Fg and normal fibrinogen after thrombin addition. The early rate of fibrinopeptide B (FPB) release is the same for the three fibrinogen groups. However, the late rate of FPB release is higher in patient fibrinogen than in normal HMW-Fg and normal fibrinogen. Therefore, the newly synthesized fibrinogen clots faster than fibrinogen in the normal steady state.In two of the 15 patients who had occluded coronary arteries after SK treatment the HMW-Fg and FPAp levels increased as compared with the 13 patients who had patent coronary arteries.These results provide some support for the idea that an increased synthesis of fibrinogen in circulation may result in a procoagulant tendency. If this is so, the HMW-Fg and FPAp content may serve as a risk index for thrombosis.


1981 ◽  
Vol 46 (03) ◽  
pp. 612-616 ◽  
Author(s):  
U Schmitz-Huebner ◽  
L Balleisen ◽  
F Asbeck ◽  
J van de Loo

SummaryHigh and low molecular weight heparin fractions obtained by gel filtration chromatography of sodium mucosal heparin were injected subcutaneously into six healthy volunteers and compared with the unfractionated substance in a cross-over trial. Equal doses of 5,000 U were administered twice daily over a period of three days and heparin activity was repeatedly controlled before and 2, 4, 8 hrs after injection by means of the APTT, the anti-Xa clotting test and a chromogenic substrate assay. In addition, the in vivo effect of subcutaneously administered fractionated heparin on platelet function was examined on three of the volunteers. The results show that s.c. injections of the low molecular weight fraction induced markedly higher anti-Xa activity than injections of the other preparations. At the same time, APTT results did not significantly differ. Unfractionated heparin and the high molecular weight fraction enhanced ADP-induced platelet aggregation and collagen-mediated MDA production, while the low molecular weight fraction hardly affected these assays, but potently inhibited thrombin-induced MDA production. All heparin preparations stimulated the release of platelet Factor 4 in plasma. During the three-day treatment periods, no side-effects and no significant changes in the response to heparin injections were detected.


1968 ◽  
Vol 108 (4) ◽  
pp. 641-646 ◽  
Author(s):  
A. Polson ◽  
W. Katz

1. The preparation of tanned gelatin spheres and granules from high-molecular-weight gelatin is described. This material is comparatively hard, giving high flow rates, is insoluble in water at temperatures between 0° and 100° and is resistant to digestion by trypsin and chymotrypsin. The high-molecular-weight fraction of gelatin was prepared by precipitation with polyethylene glycol, and the spheres and granules prepared from this fraction were hardened and insolubilized by tanning with either formalin or chromium salts or both. 2. The spheres and granules were used successfully for the separation of protein molecules and other protein-aceous materials ranging in molecular weight from 200 to greater than 6000000. This gel exclusion material has several properties superior to those of other products used for similar purposes. Further, it was noticed that the porosity of the spheres differed considerably from that of the granules.


1955 ◽  
Vol 28 (2) ◽  
pp. 504-507
Author(s):  
G. W. Drake

Abstract Fractionation of the rubber hydrocarbon in temperate climates has usually resulted in high molecular-weight fractions, with a molecular weight of the order of one million. Bloomfield has shown that fresh latex contains a considerable proportion of hydrocarbon having an intrinsic viscosity (η) of 10 or over and, therefore, a molecular weight of well over 106. The fractionation technique used by Bloomfield in Malaya has now been applied by the writer to smoked sheet and to F rubber, working in the United Kingdom. No very high molecular-weight fractions were found in the smoked sheet, but the F rubber yielded a fraction of (η)=7.3 and a number average molecular weight 6×106, determined osmometrically. The average molecular weight of natural rubber when freshly prepared is probably well over a million, and includes a substantial portion having a molecular weight of several millions. By the time smoked sheet has reached temperate climates, the high molecular-weight portion has probably been converted to gel. F rubber, presumably because of its different method of preparation, retains the major part of its high molecular-weight material during prolonged storage.


2004 ◽  
Vol 87 (3) ◽  
pp. 707-717 ◽  
Author(s):  
Barry V McCleary ◽  
Patricia Rossiter

Abstract With the recognition that resistant starch (RS) and nondigestible oligosaccharides (NDO) act physiologically as dietary fiber (DF), a need has developed for specific and reliable assay procedures for these components. The ability of AOAC DF methods to accurately measure RS is dependent on the nature of the RS being analyzed. In general, NDO are not measured at all by AOAC DF Methods 985.29 or 991.43, the one exception being the high molecular weight fraction of fructo-oligosaccharides. Values obtained for RS, in general, are not in good agreement with values obtained by in vitro procedures that more closely imitate the in vivo situation in the human digestive tract. Consequently, specific methods for the accurate measurement of RS and NDO have been developed and validated through interlaboratory studies. In this paper, modifications to AOAC fructan Method 999.03 to allow accurate measurement of enzymically produced fructo-oligosaccharides are described. Suggested modifications to AOAC DF methods to ensure complete removal of fructan and RS, and to simplify pH adjustment before amyloglucosidase addition, are also described.


Sign in / Sign up

Export Citation Format

Share Document