High-Resolution Ultrasound of Small Clinically Relevant Nerves Running Across the Posterior Triangle of the Neck

2020 ◽  
Vol 24 (02) ◽  
pp. 101-112
Author(s):  
Riccardo Picasso ◽  
Federico Zaottini ◽  
Federico Pistoia ◽  
Maribel Miguel Perez ◽  
Andrea Klauser ◽  
...  

AbstractWith the advent of high-frequency ultrasound (US) transducers, new perspectives have been opened in evaluating millimetric and submillimetric nerves that, despite their dimensions, can be considered relevant in clinical practice. In the posterior triangle of the neck, the suprascapular, long thoracic, phrenic, supraclavicular, great auricular, lesser occipital, and transverse cervical nerves are amenable to US examination and the object of special interest because they may be involved in many pathologic processes or have a value as targets of advanced therapeutic procedures. The correct identification of these nerves requires a deep knowledge of local neck anatomy and the use of a complex landmarks-based approach with US. This article describes the anatomy and US technique to examine small but clinically relevant nerves of the posterior triangle of the neck (excluding the brachial plexus), reviewing the main pathologic conditions in which they may be involved.

2008 ◽  
Vol 388 ◽  
pp. 159-162
Author(s):  
Akito Endo ◽  
Jun Akedo ◽  
Shinichi Takeuchi

The ultrasound probes utilized in this study were fabricated using lead zirconium titanate (PZT), which was deposited using two different methods—the aerosol deposition (AD) method and the hydrothermal method. The fabricated ultrasound probes had the same structure wherein an electrode and an acoustic backing block were attached to each transducer. In this study, we have compared the acoustic characteristics of a high-frequency ultrasound probe fabricated by the AD method with those of a probe fabricated using the hydrothermal method; further, we have studied and hence determined the optimal process that can be used in the fabrication of high-frequency ultrasound probes with a resonance frequency of 40 MHz. As a result, when the pickup voltage was compared, the ultrasound probes fabricated by the AD method exhibited a value 9.5 times higher than that of the probes fabricated by the hydrothermal method. Moreover, the ultrasound probes fabricated by the AD method were found to transmit pulses at resonance frequencies of 28 MHz, 45–50 MHz, and 82–88 MHz.


Medicine ◽  
2019 ◽  
Vol 98 (37) ◽  
pp. e17111 ◽  
Author(s):  
Xiang-qin Gao ◽  
Xiao-mei Xue ◽  
Jian-kang Zhang ◽  
Fei Yan ◽  
Qiu-xia Mu

Author(s):  
Carolina Ávila de Almeida ◽  
Simone Guarçoni ◽  
Bruna Duque Estrada ◽  
Maria Carolina Zafra Páez ◽  
Clarissa Canella

2020 ◽  
Vol 10 (1) ◽  
pp. 17
Author(s):  
Iris Wohlmuth-Wieser ◽  
Joel M. Ramjist ◽  
Neil Shear ◽  
Raed Alhusayen

The diagnosis of cutaneous T-cell lymphomas (CTCL) is frequently delayed by a median of three years and requires the clinical evaluation of an experienced dermatologist and a confirmatory skin biopsy. Dermoscopy and high-frequency ultrasound (HFUS) represent two non-invasive diagnostic tools. While dermoscopy is inexpensive and widely used for the diagnosis of melanoma and non-melanoma skin cancers, HFUS of skin lymphomas represents a novel diagnostic approach that is not yet implemented in the routine dermatologic practice. The aim of our study was to prospectively assess skin lesions of patients with either CTCL patches or plaques with dermoscopy and HFUS and to compare the findings with atopic dermatitis (AD) and psoriasis. Thirteen patients with an established diagnosis of CTCL, psoriasis, or AD were studied: Dermoscopy features including spermatozoa-like structures and the presence of white scales could assist in differentiating between early-stage CTCL and AD. HFUS measurements of the skin thickness indicated increased epidermal-, thickness in CTCL, and psoriasis compared with AD. Our results support the use of dermoscopy as a useful tool to diagnose CTCL. HFUS could augment the dermatologic assessment, but further studies will be needed to define standardized parameters.


Author(s):  
Shakthi Pragasam ◽  
Rashmi Kumari ◽  
Malathi Munisamy ◽  
Devinder Mohan Thappa

Sign in / Sign up

Export Citation Format

Share Document