scholarly journals Biosensor Designs for Platelet-derived Microparticles Analysis

2017 ◽  
Vol 53 (04) ◽  
pp. 234-237
Author(s):  
Jyotsna Kailashiya

ABSTRACTPlatelet-derived microparticles (PMPs) are often used as marker of platelet activation and their count in blood has been found to be significantly associated with many diseases like myocardial infarction, stroke, venous thrombo-embolism etc. PMPs have been proposed as potential biomarkers for these conditions. Biosensors are newer analytical tools, being developed for convenient and cost effective analysis. For PMPs analysis, biosensors offer many advantages over conventional analysis techniques. This mini review compiles designs and techniques of reported biosensors based on antibody capturing for analysis of PMPs.

1995 ◽  
Vol 76 (11) ◽  
pp. 830-833 ◽  
Author(s):  
Menko Jan de Boer ◽  
Ben A. van Hout ◽  
Ay Lee Liem ◽  
Harry Suryapranata ◽  
Jan C.A. Hoorntje ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zeping Qiu ◽  
Jingwen Zhao ◽  
Fanyi Huang ◽  
Luhan Bao ◽  
Yanjia Chen ◽  
...  

AbstractMyocardial fibrosis and ventricular remodeling were the key pathology factors causing undesirable consequence after myocardial infarction. However, an efficient therapeutic method remains unclear, partly due to difficulty in continuously preventing neurohormonal overactivation and potential disadvantages of cell therapy for clinical practice. In this study, a rhACE2-electrospun fibrous patch with sustained releasing of rhACE2 to shape an induction transformation niche in situ was introduced, through micro-sol electrospinning technologies. A durable releasing pattern of rhACE2 encapsulated in hyaluronic acid (HA)—poly(L-lactic acid) (PLLA) core-shell structure was observed. By multiple in vitro studies, the rhACE2 patch demonstrated effectiveness in reducing cardiomyocytes apoptosis under hypoxia stress and inhibiting cardiac fibroblasts proliferation, which gave evidence for its in vivo efficacy. For striking mice myocardial infarction experiments, a successful prevention of adverse ventricular remodeling has been demonstrated, reflecting by improved ejection fraction, normal ventricle structure and less fibrosis. The rhACE2 patch niche showed clear superiority in long term function and structure preservation after ischemia compared with intramyocardial injection. Thus, the micro-sol electrospun rhACE2 fibrous patch niche was proved to be efficient, cost-effective and easy-to-use in preventing ventricular adverse remodeling.


2017 ◽  
Vol 26 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Richard Bell ◽  
Braden Te Ao ◽  
Natasha Ironside ◽  
Adam Bartlett ◽  
John A. Windsor ◽  
...  

1999 ◽  
Vol 2 (03) ◽  
pp. 271-280 ◽  
Author(s):  
Ekrem Kasap ◽  
Kun Huang ◽  
Than Shwe ◽  
Dan Georgi

Summary The formation-rate-analysis (FRASM) technique is introduced. The technique is based on the calculated formation rate by correcting the piston rate with fluid compressibility. A geometric factor is used to account for irregular flow geometry caused by probe drawdown. The technique focuses on the flow from formation, is applicable to both drawdown and buildup data simultaneously, does not require long buildup periods, and can be implemented with a multilinear regression, from which near-wellbore permeability, p * and formation fluid compressibility are readily determined. The field data applications indicate that FRA is much less amenable to data quality because it utilizes the entire data set. Introduction A wireline formation test (WFT) is initiated when a probe from the tool is set against the formation. A measured volume of fluid is then withdrawn from the formation through the probe. The test continues with a buildup period until pressure in the tool reaches formation pressure. WFTs provide formation fluid samples and produce high-precision vertical pressure profiles, which, in turn, can be used to identify formation fluid types and locate fluid contacts. Wireline formation testing is much faster compared with the regular pressure transient testing. Total drawdown time for a formation test is just a few seconds and buildup times vary from less than a second (for permeability of hundreds of millidarcy) to half a minute (for permeability of less than 0.1 md), depending on system volume, drawdown rate, and formation permeability. Because WFT tested volume can be small (a few cubic centimeters), the details of reservoir heterogeneity on a fine scale are given with better spatial resolution than is possible with conventional pressure transient tests. Furthermore, WFTs may be preferable to laboratory core permeability measurements since WFTs are conducted at in-situ reservoir stress and temperature. Various conventional analysis techniques are used in the industry. Spherical-flow analysis utilizes early-time buildup data and usually gives permeability that is within an order of magnitude of the true permeability. For p* determination, cylindrical-flow analysis is preferred because it focuses on late-time buildup data. However, both the cylindrical- and spherical-flow analyses have their drawbacks. Early-time data in spherical-flow analysis results in erroneous p* estimation. Late-time data are obtained after long testing times, especially in low-permeability formations; however, long testing periods are not desirable because of potential tool "sticking" problems. Even after extended testing times, the cylindrical-flow period may not occur or may not be detectable on WFTs. When it does occur, permeability estimates derived from the cylindrical-flow period may be incorrect and their validity is difficult to judge. New concepts and analysis techniques, combined with 3-D numerical studies, have recently been reported in the literature.1–7 Three-dimensional numerical simulation studies1–6 have contributed to the diagnosis of WFT-related problems and the improved analysis of WFT data. The experimental studies7 showed that the geometric factor concept is valid for unsteady state probe pressure tests. This study presents the FRA technique8 that can be applied to the entire WFT where a plot for both drawdown and buildup periods renders straight lines with identical slopes. Numerical simulation studies were used to generate data to test both the conventional and the FRA techniques. The numerical simulation data are ideally suited for such studies because the correct answer is known (e.g., the input data). The new technique and the conventional analysis techniques are also applied to the field data and the results are compared. We first review the theory of conventional analysis techniques, then present the FRA technique for combined drawdown and buildup data. A discussion of the numerical results and the field data applications are followed by the conclusions. Analysis Techniques It has been industry practice to use three conventional techniques, i.e., pseudo-steady-state drawdown (PSSDD), spherical and cylindrical-flow analyses, to calculate permeability and p* Conventional Techniques Pseudo-Steady-State Drawdown (PSSDD). When drawdown data are analyzed, it is assumed that late in the drawdown period the pressure drop stabilizes and the system approaches to a pseudo-steady state when the formation flow rate is equal to the drawdown rate. PSSDD permeability is calculated from Darcy's equation with the stabilized (maximum) pressure drop and the flowrate resulting from the piston withdrawal:9–11 $$k {d}=1754.5\left({q\mu \over r {i}\Delta p {{\rm max}}}\right),\eqno ({\rm 1})$$where kd=PSSDD permeability, md. The other parameters are given in Nomenclature.


1999 ◽  
Vol 2 (3) ◽  
pp. 184 ◽  
Author(s):  
EA Alemao ◽  
PS Cady ◽  
HM Phatak ◽  
VL Culbertson

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Andrew J Lucking ◽  
Magnus Lundback ◽  
Nicholas L Mills ◽  
Dana Faratian ◽  
Fleming Cassee ◽  
...  

Background: Transient exposure to traffic-derived air pollution may be a trigger for acute myocardial infarction although the mechanism is unclear. The aim of this study was to investigate the effect of diesel exhaust inhalation on thrombus formation in man using an ex vivo model of thrombosis. Methods and Results: In a double-blind randomized cross-over study, 20 healthy volunteers were exposed to diluted diesel exhaust (300 μg/m3) or filtered air during intermittent exercise for 1 or 2 hours. Thrombus formation, coagulation, platelet activation and inflammatory markers were measured at 2 and 6 hours after exposure. Thrombus formation was measured using the Badimon ex vivo perfusion chamber at low (212 /s) and high (1,690 /s) shear rates with porcine aortic tunica media as the thrombogenic substrate. Specimens were fixed, stained and thrombus area measured using computerized planimetry. Compared to filtered air, diesel exhaust increased thrombus formation in the low and high shear chambers by 24.2% (p<0.001) and 19.1% (p<0.001) respectively. This increased thrombogenicity was seen at two and six hours, and using two different types of diesel exposure. Although there were no effects on coagulation variables, diesel exhaust inhalation increased platelet-neutrophil (6.5% to 9.2%; P<0.05) and platelet-monocyte (21.0% to 25.0%; P<0.05) aggregates 2 hours following exposure. Conclusions: Inhalation of diesel exhaust increases ex vivo thrombus formation and causes platelet activation in man. These findings provide a potential mechanism that links exposure to traffic-derived air pollution with acute atherothrombotic events including acute myocardial infarction.


Sign in / Sign up

Export Citation Format

Share Document