scholarly journals Best Paper Selection

2021 ◽  
Vol 30 (01) ◽  
pp. 155-156

Gemein LAW, Schirrmeister RT, Chrabąszcz P, Wilson D, Boedecker J, Schulze-Bonhage A, Hutter F, Ball T. Machine-learning-based diagnostics of EEG pathology. https://www.sciencedirect.com/science/article/pii/S1053811920305073?via%3Dihub Karimi D, Dou H, Warfield SK, Gholipour A. Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis. https://www.sciencedirect.com/science/article/abs/pii/S1361841520301237?via%3Dihub Langner T, Strand R, Ahlström H, Kullberg J. Large-scale biometry with interpretable neural network regression on UK Biobank body MRI. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576214/ Saito H, Aoki T, Aoyama K, Kato Y, Tsuboi A, Yamada A, Fujishiro M, Oka S, Ishihara S, Matsuda T, Nakahori M, Tanaka S, Koike K, Tada T. Automatic detection and classification of protruding lesions in wireless capsule endoscopy images based on a deep convolutional neural network. https://www.giejournal.org/article/S0016-5107(20)30132-2/fulltext

Author(s):  
Kaiwen Qin ◽  
Jianmin Li ◽  
Yuxin Fang ◽  
Yuyuan Xu ◽  
Jiahao Wu ◽  
...  

Abstract Background Wireless capsule endoscopy (WCE) is considered to be a powerful instrument for the diagnosis of intestine diseases. Convolution neural network (CNN) is a type of artificial intelligence that has the potential to assist the detection of WCE images. We aimed to perform a systematic review of the current research progress to the CNN application in WCE. Methods A search in PubMed, SinoMed, and Web of Science was conducted to collect all original publications about CNN implementation in WCE. Assessment of the risk of bias was performed by Quality Assessment of Diagnostic Accuracy Studies-2 risk list. Pooled sensitivity and specificity were calculated by an exact binominal rendition of the bivariate mixed-effects regression model. I2 was used for the evaluation of heterogeneity. Results 16 articles with 23 independent studies were included. CNN application to WCE was divided into detection on erosion/ulcer, gastrointestinal bleeding (GI bleeding), and polyps/cancer. The pooled sensitivity of CNN for erosion/ulcer is 0.96 [95% CI 0.91, 0.98], for GI bleeding is 0.97 (95% CI 0.93–0.99), and for polyps/cancer is 0.97 (95% CI 0.82–0.99). The corresponding specificity of CNN for erosion/ulcer is 0.97 (95% CI 0.93–0.99), for GI bleeding is 1.00 (95% CI 0.99–1.00), and for polyps/cancer is 0.98 (95% CI 0.92–0.99). Conclusion Based on our meta-analysis, CNN-dependent diagnosis of erosion/ulcer, GI bleeding, and polyps/cancer approached a high-level performance because of its high sensitivity and specificity. Therefore, future perspective, CNN has the potential to become an important assistant for the diagnosis of WCE.


2021 ◽  
Vol 11 (3) ◽  
pp. 352
Author(s):  
Isselmou Abd El Kader ◽  
Guizhi Xu ◽  
Zhang Shuai ◽  
Sani Saminu ◽  
Imran Javaid ◽  
...  

The classification of brain tumors is a difficult task in the field of medical image analysis. Improving algorithms and machine learning technology helps radiologists to easily diagnose the tumor without surgical intervention. In recent years, deep learning techniques have made excellent progress in the field of medical image processing and analysis. However, there are many difficulties in classifying brain tumors using magnetic resonance imaging; first, the difficulty of brain structure and the intertwining of tissues in it; and secondly, the difficulty of classifying brain tumors due to the high density nature of the brain. We propose a differential deep convolutional neural network model (differential deep-CNN) to classify different types of brain tumor, including abnormal and normal magnetic resonance (MR) images. Using differential operators in the differential deep-CNN architecture, we derived the additional differential feature maps in the original CNN feature maps. The derivation process led to an improvement in the performance of the proposed approach in accordance with the results of the evaluation parameters used. The advantage of the differential deep-CNN model is an analysis of a pixel directional pattern of images using contrast calculations and its high ability to classify a large database of images with high accuracy and without technical problems. Therefore, the proposed approach gives an excellent overall performance. To test and train the performance of this model, we used a dataset consisting of 25,000 brain magnetic resonance imaging (MRI) images, which includes abnormal and normal images. The experimental results showed that the proposed model achieved an accuracy of 99.25%. This study demonstrates that the proposed differential deep-CNN model can be used to facilitate the automatic classification of brain tumors.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1384
Author(s):  
Yin Dai ◽  
Yifan Gao ◽  
Fayu Liu

Over the past decade, convolutional neural networks (CNN) have shown very competitive performance in medical image analysis tasks, such as disease classification, tumor segmentation, and lesion detection. CNN has great advantages in extracting local features of images. However, due to the locality of convolution operation, it cannot deal with long-range relationships well. Recently, transformers have been applied to computer vision and achieved remarkable success in large-scale datasets. Compared with natural images, multi-modal medical images have explicit and important long-range dependencies, and effective multi-modal fusion strategies can greatly improve the performance of deep models. This prompts us to study transformer-based structures and apply them to multi-modal medical images. Existing transformer-based network architectures require large-scale datasets to achieve better performance. However, medical imaging datasets are relatively small, which makes it difficult to apply pure transformers to medical image analysis. Therefore, we propose TransMed for multi-modal medical image classification. TransMed combines the advantages of CNN and transformer to efficiently extract low-level features of images and establish long-range dependencies between modalities. We evaluated our model on two datasets, parotid gland tumors classification and knee injury classification. Combining our contributions, we achieve an improvement of 10.1% and 1.9% in average accuracy, respectively, outperforming other state-of-the-art CNN-based models. The results of the proposed method are promising and have tremendous potential to be applied to a large number of medical image analysis tasks. To our best knowledge, this is the first work to apply transformers to multi-modal medical image classification.


2005 ◽  
Vol 44 (02) ◽  
pp. 149-153 ◽  
Author(s):  
F. Estrella ◽  
C. del Frate ◽  
T. Hauer ◽  
M. Odeh ◽  
D. Rogulin ◽  
...  

Summary Objectives: The past decade has witnessed order of magnitude increases in computing power, data storage capacity and network speed, giving birth to applications which may handle large data volumes of increased complexity, distributed over the internet. Methods: Medical image analysis is one of the areas for which this unique opportunity likely brings revolutionary advances both for the scientist’s research study and the clinician’s everyday work. Grids [1] computing promises to resolve many of the difficulties in facilitating medical image analysis to allow radiologists to collaborate without having to co-locate. Results: The EU-funded MammoGrid project [2] aims to investigate the feasibility of developing a Grid-enabled European database of mammograms and provide an information infrastructure which federates multiple mammogram databases. This will enable clinicians to develop new common, collaborative and co-operative approaches to the analysis of mammographic data. Conclusion: This paper focuses on one of the key requirements for large-scale distributed mammogram analysis: resolving queries across a grid-connected federation of images.


Sign in / Sign up

Export Citation Format

Share Document