3D MRI of the Knee

2021 ◽  
Vol 25 (03) ◽  
pp. 455-467
Author(s):  
Faysal Altahawi ◽  
Jason Pierce ◽  
Mercan Aslan ◽  
Xiaojuan Li ◽  
Carl S. Winalski ◽  
...  

AbstractThree-dimensional (3D) magnetic resonance imaging (MRI) of the knee is widely used in musculoskeletal (MSK) imaging. Currently, 3D sequences are most commonly used for morphological imaging. Isotropic 3D MRI provides higher out-of-plane resolution than standard two-dimensional (2D) MRI, leading to reduced partial volume averaging artifacts and allowing for multiplanar reconstructions in any plane with any thickness from a single high-resolution isotropic acquisition. Specifically, isotropic 3D fast spin-echo imaging, with options for tissue weighting similar to those used in multiplanar 2D FSE imaging, is of particular interest to MSK radiologists. New applications for 3D spatially encoded sequences are also increasingly available for clinical use. These applications offer advantages over standard 2D techniques for metal artifact reduction, quantitative cartilage imaging, nerve imaging, and bone shape analysis. Emerging fast imaging techniques can be used to overcome the long acquisition times that have limited the adoption of 3D imaging in clinical protocols.

2021 ◽  
Vol 25 (03) ◽  
pp. 397-408
Author(s):  
Richard Kijowski

AbstractOsteoarthritis, characterized by the breakdown of articular cartilage and other joint structures, is one of the most prevalent and disabling chronic diseases in the United States. Magnetic resonance imaging is a commonly used imaging modality to evaluate patients with joint pain. Both two-dimensional fast spin-echo sequences (2D-FSE) and three-dimensional (3D) sequences are used in clinical practice to evaluate articular cartilage. The 3D sequences have many advantages compared with 2D-FSE sequences, such as their high in-plane spatial resolution, thin continuous slices that reduce the effects of partial volume averaging, and ability to create multiplanar reformat images following a single acquisition. This article reviews the different 3D imaging techniques available for evaluating cartilage morphology, illustrates the strengths and weaknesses of 3D approaches compared with 2D-FSE approaches for cartilage imaging, and summarizes the diagnostic performance of 2D-FSE and 3D sequences for detecting cartilage lesions within the knee and hip joints.


2021 ◽  
Vol 25 (03) ◽  
pp. 418-424
Author(s):  
Blake C. Jones ◽  
Shivani Ahlawat ◽  
Laura M. Fayad

AbstractAdvances in magnetic resonance imaging (MRI) technology now enable the feasible three-dimensional (3D) acquisition of images. With respect to the imaging of musculoskeletal (MSK) tumors, literature is beginning to accumulate on the use of 3D MRI acquisition for tumor detection and characterization. The benefits of 3D MRI, including general advantages, such as decreased acquisition time, isotropic resolution, and increased image quality, are not only inherently useful for tumor imaging, but they also contribute to the feasibility of more specialized tumor-imaging techniques, such as whole-body MRI, and are reviewed here. Disadvantages of 3D acquisition, such as motion artifact and equipment requirements, do exist and are also discussed. Although further study is needed, 3D MRI acquisition will likely prove increasingly useful in the evaluation of patients with tumors of the MSK system.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 27-28
Author(s):  
Alessia Pepe ◽  
Nicola Martini ◽  
Rita Borrello ◽  
Vincenzo Positano ◽  
Laura Pistoia ◽  
...  

Introduction.The presence of iron deposits results in a significant reduction in all magnetic resonance imaging (MRI) relaxation times (T1, T2 and T2*). In the clinical setting the T2* technique is the method of choice for cardiac iron quantification and it has revolutionized the management of patients with hemoglopinopathies. Purpose.To compare myocardial T2 against T2* in patients with thalassemia major (TM) for myocardial iron characterization. Methods.133 TM patients (79 females, 38.4±11.3 years) enrolled in the Extension Myocardial Iron Overload in Thalassemia (eMIOT) Network were considered. T2 and T2* images were acquired, respectively, with multi-echo fast-spin-echo and gradient-echo sequences. Global heart T2 and T2* values were obtained by averaging the values in all 16 myocardial segments. The normal T2 range was established as mean±2 standard deviations on data acquired on 80 healthy volunteers (males: 48-56 ms and females: 50-57 ms). The lower limit of normal for global heart T2*, established on the same healthy population, was 32 ms. Results.A significant correlation was detected between global heart T2 and T2* values (R=0.577; P<0.0001) (Figure). Out of the 113 (84.9%) patients with a normal global heart T2* value, none had a decreased global heart T2 value, while 58 (51.3%) had an increased T2 value. Out of the 20 patents with a decreased global heart T2* value, only 10 (50%) had also a reduced T2 value. Conversely, 9 (45.0%) had a normal global heart T2 value and one (4.5) showed an increased T2 value. The 59 patients with increased global heart T2 value were significantly older than the remaining patients (40.8±10.5 vs 36.4±11.6 years; P=0.019) Conclusion.All patients with decreased T2 value had also a decreased T2* value and in half of the patients iron load was undetected by T2, suggesting that T2 mapping does not offer any advantage in terms of sensitivity for MIO assessment. However, more than half of TM patients had an increased T2 value, thus may be caused by the presence of myocardial inflammation and/or edema. So, T2 mapping could reveal subclinical myocardial involvement in TM patients. Figure Disclosures Pistoia: Chiesi Farmaceutici S.p.A.:Other: speakers' honoraria.Meloni:Chiesi Farmaceutici S.p.A.:Other: speakers' honoraria.


2016 ◽  
Vol 23 (2) ◽  
pp. 144-154 ◽  
Author(s):  
Philip M. Robson ◽  
Ananth J. Madhuranthakam ◽  
Martin P. Smith ◽  
Maryellen R.M. Sun ◽  
Weiying Dai ◽  
...  

1998 ◽  
Vol 8 (2) ◽  
pp. 459-466 ◽  
Author(s):  
Tomoaki Ichikawa ◽  
Hiroki Haradome ◽  
Hideto Hanaoka ◽  
Yosimori Kassai ◽  
Toshiaki Nitatori ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document