New Insights in Coagulation and Fibrinolysis in Patients with Primary Brain Cancer: A Systematic Review

Author(s):  
Anne Winther-Larsen ◽  
Birgitte Sandfeld-Paulsen ◽  
Anne-Mette Hvas

AbstractPatients with primary brain tumors have a high incidence of thrombosis and hemorrhage. The underlying mechanism is believed to be derangement of their hemostatic system. To get nearer a clarification of this, we aimed to systematically review the existing literature regarding primary and secondary hemostasis as well as fibrinolysis in patients with primary brain tumor. The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The databases PubMed, Embase, and Web of Science were searched on December 15, 2020, without time restrictions. Studies were included if they evaluated at least one blood coagulation and/or fibrinolysis parameter in patients with primary brain cancer. In total, 26 articles including 3,288 patients were included. Overall, increased activity of secondary hemostasis was observed as increased prothrombin fragment 1 + 2 and endogenous thrombin generation levels were found in glioma patients compared with controls. Furthermore, data showed a state of hypofibrinolysis with increased plasminogen activator inhibitor 1 and prolonged clot lysis time in glioma patients. In contrast, no consistent increase in the primary hemostasis was identified; however, data suggested that increased sP-selectin could be a biomarker of increased venous thromboembolism risk and that increased platelet count may be prognostic for survival. Lastly, data indicated that fibrinogen and D-dimer could hold prognostic value. In conclusion, this review indicates that an increased activity of secondary hemostasis and impaired fibrinolysis could be important players in the pathogeneses behind the high risk of thromboembolisms observed in brain cancer patients. Thus, long-term thromboprophylaxis may be beneficial and additional studies addressing this issue are wanted.

1996 ◽  
Vol 75 (01) ◽  
pp. 118-126 ◽  
Author(s):  
T Abrahamsson ◽  
V Nerme ◽  
M Strömqvist ◽  
B Åkerblom ◽  
A Legnehed ◽  
...  

SummaryThe aim of this study was to investigate the anti-thrombotic effects of an inhibitor of the plasminogen activator inhibitor-1 (PAI-1) in rats given endotoxin. In studies in vitro, PRAP-1, a Fab-fragment of a polyclonal antibody against human PAI-1, was shown to inhibit PAI-1 activity in rat plasma as well as to stimulate clot-lysis of the euglobulin fraction derived from rat plasma. Endotoxin administered to anaesthetised rats produced a marked increase in plasma PAI-1 activity. To study fibrin formation and lysis in vivo after intravenous (i. v.) injection of the coagulant enzyme batroxobin, 125I-fibrinogen was administered to the animals. The thrombi formed by batroxobin were rapidly lysed in control animals, while the rate of lysis was markedly attenuated in rats given endotoxin. PRAP-1 was administered i.v. (bolus + infusion) to rats given endotoxin and batroxobin and the PAI-1 inhibitor caused a dose-dependent decrease in the 125I-fibrin deposition in the lungs. An immunohistochemical technique was used to confirm this decrease in density of fibrin clots in the tissue. Furthermore, PRAP-1 decreased plasma PAI-1 activity in the rats and this reduction was correlated to the decrease in lung 125I-fibrin deposition at the corresponding time point. It is concluded that in this experimental model the PAI-1 antibody PRAP-1 may indeed inhibit thrombosis in animals exposed to endotoxin.


1993 ◽  
Vol 70 (02) ◽  
pp. 301-306 ◽  
Author(s):  
Linda A Robbie ◽  
Nuala A Booth ◽  
Alison M Croll ◽  
Bruce Bennett

SummaryThe relative importance of the two major inhibitors of fibrinolysis, α2-antiplasmin (α2-AP) and plasminogen activator inhibitor (PAI-1), were investigated using a simple microtitre plate system to study fibrin clot lysis in vitro. Cross-linked fibrin clots contained plasminogen and tissue plasminogen activator (t-PA) at concentrations close to physiological. Purified α2-AP and PAI-1 caused dose-dependent inhibition. All the inhibition due to normal plasma, either platelet-rich or poor, was neutralised only by antibodies to α2-AP. Isolated platelets, at a final concentration similar to that in blood, 2.5 × 108/ml, markedly inhibited clot lysis. This inhibition was neutralised only by antibodies to PAI-1. At the normal circulating ratio of plasma to platelets, α2-AP was the dominant inhibitor. When the platelet:plasma ratio was raised some 20-fold, platelet PAI-1 provided a significant contribution. High local concentrations of PAI-1 do occur in thrombi in vivo, indicating a role for PAI-1, complementary to that of α2-AP, in such situations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Zuo ◽  
Mark Warnock ◽  
Alyssa Harbaugh ◽  
Srilakshmi Yalavarthi ◽  
Kelsey Gockman ◽  
...  

AbstractPatients with coronavirus disease-19 (COVID-19) are at high risk for thrombotic arterial and venous occlusions. However, bleeding complications have also been observed in some patients. Understanding the balance between coagulation and fibrinolysis will help inform optimal approaches to thrombosis prophylaxis and potential utility of fibrinolytic-targeted therapies. 118 hospitalized COVID-19 patients and 30 healthy controls were included in the study. We measured plasma antigen levels of tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) and performed spontaneous clot-lysis assays. We found markedly elevated tPA and PAI-1 levels in patients hospitalized with COVID-19. Both factors demonstrated strong correlations with neutrophil counts and markers of neutrophil activation. High levels of tPA and PAI-1 were associated with worse respiratory status. High levels of tPA, in particular, were strongly correlated with mortality and a significant enhancement in spontaneous ex vivo clot-lysis. While both tPA and PAI-1 are elevated among COVID-19 patients, extremely high levels of tPA enhance spontaneous fibrinolysis and are significantly associated with mortality in some patients. These data indicate that fibrinolytic homeostasis in COVID-19 is complex with a subset of patients expressing a balance of factors that may favor fibrinolysis. Further study of tPA as a biomarker is warranted.


Blood ◽  
1991 ◽  
Vol 78 (2) ◽  
pp. 401-409 ◽  
Author(s):  
J Keijer ◽  
M Linders ◽  
AJ van Zonneveld ◽  
HJ Ehrlich ◽  
JP de Boer ◽  
...  

Abstract Plasminogen activator inhibitor 1 (PAI-1), an essential regulatory protein of the fibrinolytic system, harbors interaction sites for plasminogen activators (tissue-type [t-PA] and urokinase-type [u-PA]) and for fibrin. In this study, anti-PAI-1 monoclonal antibodies (MoAbs) were used to identify interaction sites of PAI-1 with these components. The binding sites of 18 different MoAbs were established and are located on five distinct “linear” areas of PAI-1. MoAbs, binding to two distinct areas of PAI-1, are able to prevent the inhibition of t-PA by PAI-1. In addition, two interaction sites for fibrin were identified on PAI-1. The area located between amino acids 110 and 145 of PAI-1 contains a binding site for both components and its significance is discussed in the context of the t-PA inhibition by fibrin-bound PAI-1. Subsequently, the MoAbs were used to assess the role of platelet-PAI-1 in clot-lysis. An in vitro clot-lysis system was used to demonstrate that clot-lysis resistance is dependent on the presence of activated platelets and that PAI-1 is a major determinant for lysis-resistance. We propose that, upon activation of platelets, PAI-1 is fixed within the clot by binding to fibrin and retains its full capacity to inhibit t-PA and u-PA.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2336-2336
Author(s):  
Brett L. Houston ◽  
Dhruva J. Dwivedi ◽  
Peter Grin ◽  
Michelle Kwong ◽  
Enrico Rullo ◽  
...  

Abstract BACKGROUND: Sepsis is a leading cause of mortality among critically ill patients and is associated with both systemic inflammation and up-regulation of coagulation. In the translational sub-study of the HALO (Heparin AnticoaguLation to improve Outcomes in septic shock) pilot trial, we evaluated the mechanisms by which unfractionated heparin (UFH) may reduce inflammation and coagulation in patients with septic shock. METHODS: In this multicenter pilot randomized trial of 69 patients diagnosed with septic shock, we evaluated the feasibility of administering therapeutic dose intravenous UFH (18 IU/kg/hr) compared to thromboprophylactic subcutaneous dalteparin (5000 IU daily). Blood samples were collected on days 1 (baseline prior to study infusion), 2, 3, 5, and 7. We evaluated coagulation using assays for protein C, activated protein C, thrombin-antithrombin (TAT), thrombin generation, clot lysis, plasminogen activator inhibitor-1 (PAI-1) and cell-free DNA (cf-DNA). Systematic inflammation was evaluated by measuring inflammatory cytokines (interleukin (IL)-6, IL-8, IL-10, and IL-17). RESULTS: The mean age of the study population was 61 years, of whom 43% were male. Thirty two patients (46%) were randomized to receive unfractionated heparin while 37 (54%) received dalteparin. The baseline mean aggregate Acute Physiology and Chronic Health Evaluation II (APACHE II) score was 25 ± 7.8, and Multiple Organ Dysfunction Score (MODS) 5.6 ± 2.38. Baseline laboratory testing (coagulation assays and inflammatory cytokines) was not statistically different between UFH vs. LMWH treated patients. On day 2, the median clot lysis time in UFH-treated patients compared to those receiving dalteparin was significantly decreased [6630 (IQR 0 - 14156) seconds vs. 9615 (IQR 8209 - 11018) seconds; p = 0.008] (Figure 1). UFH administration was associated with increased protein C levels [66.4% of normal (IQR 9.9 - 122.9) vs. 41.1% of normal (IQR 4.8 - 77.4); p = 0.02], and reduced thrombin generation of 0 (IQR 0 - 1725) units/min vs. 3393 (IQR 0 - 8519) units/min; p<0.001]. On day 2, we observed no differences between thrombin-antithrombin complex (TAT), activated protein C, plasminogen activator inhibitor-1 (PAI-1) or cell-free DNA (cf-DNA). Similarly, there were no differences between treatment groups in inflammatory markers, including IL-6, IL-8, IL-10 or IL-17. Analysis thus far is limited to samples collected on days 1 and 2; day 3-7 analyses are ongoing. CONCLUSION: In patients diagnosed with septic shock, IV UFH reduces thrombin generation, shortens clot lysis time and improves endogenous protein C levels compared to dalteparin administered for thromboprophylaxis. Analyses for samples obtained on days 3, 5 and 7 are ongoing. These preliminary data provide a biologic rational for the use of heparin in sepsis. Figure 1. Differences in clot lysis, protein C and thrombin generation in patients treated with UFH vs. LMWH. UFH is associated with reduced thrombin generation, improved Protein C levels, and reduced clot lysis time. Figure 1. Differences in clot lysis, protein C and thrombin generation in patients treated with UFH vs. LMWH. UFH is associated with reduced thrombin generation, improved Protein C levels, and reduced clot lysis time. Disclosures No relevant conflicts of interest to declare.


2006 ◽  
Vol 27 (7) ◽  
pp. 1293-1308 ◽  
Author(s):  
Mervyn Di Vergouwen ◽  
Marinus Vermeulen ◽  
Rob J de Haan ◽  
Marcel Levi ◽  
Yvo BWEM Roos

Calcium antagonists have been shown to be superior over other antihypertensive drugs to prevent stroke. Because this cannot be fully attributed to blood pressure lowering effects, other mechanisms seem to play a role. Previously we found in patients with subarachnoid hemorrhage that nimodipine enhances fibrinolytic activity. The purpose of this systematic review was to investigate the fibrinolytic effect of calcium antagonists in general, especially in patients with hypertension. We systematically studied the entire PUBMED and EMBASE database with the search terms ‘calcium antagonist’ combined with ‘fibrinolysis’, ‘(euglobulin) clot lysis time’ (ECLT), ‘tissue plasminogen activator’ (tPA), or ‘plasminogen activator inhibitor’ (PAI). Twenty-six prospective studies were identified and 22 manuscripts were included (802 investigated individuals). The results show that calcium antagonists significantly increase fibrinolysis as shown by a reduction of the ECLT standardized mean differences (SMD) −0.58 (95% confidence interval (CI) −1.05 to −0.11)) and an increase of tPA activity (SMD 0.73 (95% CI 0.25 to 1.21)). This increase of fibrinolysis is apparently caused by an increase of the tPA antigen level (SMD 0.16 (95% CI −0.05 to 0.37)) and a decrease of the plasminogen activator inhibitor-1 antigen antigen (SMD −0.36 (95% CI −0.74 to 0.02)). A sensitivity analysis showed that dihydropyridines, but not phenylalkylamines, exert a fibrinolytic effect. This fibrinolytic effect is not only seen in patients with subarachnoid hemorrhage but also in hypertensive patients. In conclusions, calcium antagonists increase fibrinolytic activity. This may add to the beneficial pharmacological effect of calcium antagonists to prevent ischemic events in patients with hypertension and subarachnoid hemorrhage.


Blood ◽  
1997 ◽  
Vol 90 (4) ◽  
pp. 1527-1534
Author(s):  
Peter Carmeliet ◽  
Jean-Marie Stassen ◽  
Ilse Van Vlaenderen ◽  
Robert S. Meidell ◽  
Désiré Collen ◽  
...  

Impaired fibrinolysis, resulting from increased plasminogen activator inhibitor-1 (PAI-1) or reduced tissue-type plasminogen activator (t-PA) plasma levels, may predispose the individual to subacute thrombosis in sepsis and inflammation. The objective of these studies was to show that adenovirus-mediated gene transfer could increase systemic plasma t-PA levels and thrombolytic capacity in animal model systems. Recombinant adenovirus vectors were constructed that express either human wild type or PAI-1–resistant t-PA from the cytomegalovirus (CMV) promoter. Both t-PA-deficient (t-PA−/−) and PAI-1–overexpressing transgenic mice were infected by intravenous injection of these viruses. Intravenous injection of recombinant adenovirus resulted in liver gene transfer, t-PA synthesis, and secretion into the plasma. Virus dose, human t-PA antigen, and activity concentrations in plasma and extent of lysis of a 125I-fibrin–labeled pulmonary embolism were all closely correlated. Plasma t-PA antigen and activity were increased approximately 1,000-fold above normal levels. Clot lysis was significantly increased in mice injected with a t-PA–expressing virus, but not in mice injected with saline or an irrelevant adenovirus. Comparable levels of enzyme activity and clot lysis were obtained with wild type and inhibitor-resistant t-PA viruses. Adenovirus-mediated t-PA gene transfer was found to augment clot lysis as early as 4 hours after infection, but expression levels subsided within 7 days. Adenovirus-mediated transfer of a t-PA gene can effectively increase plasma fibrinolytic activity and either restore (in t-PA–deficient mice) or augment (in PAI-1–overexpressing mice) the thrombolytic capacity in simple animal models of defective fibrinolysis.


1991 ◽  
Vol 66 (04) ◽  
pp. 474-478 ◽  
Author(s):  
Tetsumei Urano ◽  
Kenichi Sumiyoshi ◽  
Michal H Pietraszek ◽  
Yumiko Takada ◽  
Akikazu Takada

SummaryThe antigen levels of tissue plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) were assayed in the plasma and in the euglobulin fraction, and their contributions to the euglobulin clot lysis time (ECLT) and t-PA activity were analyzed. Total and free PAI-1 levels in both fractions showed significant positive correlation with ECLT (p <0.001), whereas t-PA antigen level did not have a high correlation coefficient with ECLT. t-PA activity showed significant negative correlation with ECLT (p <0.001) and positive correlation with free t-PA level (p <0.001), which was calculated by the ratio of the concentrations of t-PA-PAI-1 complex and the free PAI-1. Thus free t-PA seems to dissolve the euglobulin clot and its concentration seems to be controlled by the concentration of free PAI-1. These findings were confirmed by the analyses of the effects of C1-inactivator and antibody against t-PA to regular ECLT and kaolin activated ECLT, the latter of which was only inhibited by the addition of C1-inactivator whereas the former was inhibited by anti-t-PA antibody.


1992 ◽  
Vol 68 (04) ◽  
pp. 396-399 ◽  
Author(s):  
J N Primrose ◽  
J A Davies ◽  
C R M Prentice ◽  
R Hughes ◽  
D Johnston

SummaryThe aim of this study was to determine the effects of the surgical treatment of morbid obesity on some aspects of haemostatic and fibrinolytic function. Measurement of haemostatic and fibrinolytic factors was performed before and again 6 and 12 months after operation in 19 patients suffering from morbid obesity. Surgical treatment resulted in a mean decrease in body weight of 50 kg at 6 months and 64 kg at 12 months. Weight loss was accompanied at 12 months by significant reductions in median (interquartile range) concentrations of serum cholesterol from 5.3 (4.5–6.2) mmol/1 to 3.6 (2.9–4.6) mmol/1; factor VII from 113 (92–145)% of normal to 99 (85–107)%; of fibrinogen from 3.5 (3–9.3) g/1 to 2.8 (2.4–3.8) g/1; and of plasminogen activator inhibitor-1 (PAI-1) activity from 21 (11–30) IU/ml to 6.3 (5–10) IU/ml. The decrease in PAI-1 activity probably accounted for a significant reduction in euglobulin clot lysis time. Tissue plasminogen activator activity was undetectable in most patients pre-operatively but increased slightly after 1 year to 110 (100–204) mIU/ml. There were no significant changes in plasma levels of KCCT, factor VIII, von Willebrand factor antigen, alpha-2-antiplasmin, antithrombin III, protein C antigen, beta thromboglobulin, platelet factor 4, fibrinopeptide A or platelet count. These findings provide support for the hypothesis that the surgical treatment of morbid obesity may have a long-term beneficial effect on mortality from cardiovascular and thromboembolic disease.


1994 ◽  
Vol 72 (06) ◽  
pp. 900-905 ◽  
Author(s):  
Harold A R Stringer ◽  
Peter van Swieten ◽  
Anton J G Horrevoets ◽  
Annelies Smilde ◽  
Hans Pannekoek

SummaryWe further investigated the role of the finger (F) and the kringle-2 (K2) domains of tissue-type plasminogen activator (t-PA) in fibrin-stimulated plasminogen activation. To that end, the action of purified (wt) t-PA or of variants lacking F (del.F) or K2 (del.K2) was assessed either in a static, human whole blood clot-lysis system or in whole blood thrombi generated in the “Chandler loop”. In both clot-lysis systems, significant differences were observed for the initiation of thrombolysis with equimolar concentrations of the t-PA variants. A relatively minor “lag phase” occurred in thrombolysis mediated by wt t-PA, whereas a 6.4-fold and 1.6-fold extension is found for del.F and del.K2, respectively. We observed identical lag-times, characteristic for each t-PA variant, in platelet-rich heads and in platelet-poor tails of thrombi. Since plasminogen activator inhibitor 1 (PAI-1) is preferentially retained in the platelet-rich heads, we conclude that the inhibitor does not interfere with the initial stage of thrombolysis but exerts its action in later stages, resulting in a reduction of the rate of clot lysis. A complementation clot-lysis assay was devised to study a potential interplay of del.F and del.K2. Accordingly, clot lysis was determined with combinations of del.F and del.K2 that were inversely varied in relation to equipotent dosage to distinguish between additive, antagonistic or synergistic effects of these variants. The isobole for combinations of del.F and del.K2 shows an independent, additive action of del.F and del.K2 in clot lysis. Under the conditions employed, namely a relatively high concentration of fibrin and Glu-plasminogen and a low concentration of t-PA variant, our data show: i) the crucial role of the F domain and the lack of effect of PAI-1 in initiation of thrombolysis, ii) the lack of importance of the fibrimbinding domains of t-PA and the regulatory role of PAI-1 in advanced stages of thrombolysis.


Sign in / Sign up

Export Citation Format

Share Document