scholarly journals Eco-friendly and Economical Spectrophotometric Estimation of the Low Water-Soluble Drug (Norfloxacin) Applying the Concept of Mixed Hydrotropy

Author(s):  
Ketan Soni ◽  
Kavita Sharma

Abstract Objectives The main aim of the research was to analyze an economical and eco-friendly approach to improve the solubility of norfloxacin. The current analysis was to utilize the hydrotropic solutions to extract the drugs from their dosage forms, avoiding the use of costlier and harmful organic solvents. Materials and Methods In this study, an ultraviolet–visible spectrophotometer (model 1800, Shimadzu Corporation) was used to analyze the norfloxacin drug. The mixed hydrotropy approach was used to determine the solubility of norfloxacin. In this work, a blend solution (20% of urea + 20% of sodium benzoate) was used as a hydrotropic solubilizing agent. Results The solubility of norfloxacin drug in water was very low at ∼0.88 mg/mL and the solubility of norfloxacin drug in the blend solution was 11 mg/mL. From 98.96 (tablet II) to 99.35 (tablet I), the percent estimation value was achieved. This value was nearly 100, so the proposed method was correct. Standard deviation (0.2540–0.4156), percentage coefficient of variation (0.2566–0.4183), and the value of standard error (0.1481–0.2415) are also very low; hence, we can say that the proposed method is accurate. Conclusion To avoid the use of organic solvents, the mixed hydrotropy concept can be used for spectrophotometric estimation of low water-soluble drugs from bulk drug samples. It provides an economical and environmentally friendly mechanism.

Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
H G Sandip

In present investigation liquisolid compact technique is investigated as a tool for enhanced dissolution of poorly water-soluble drug Ketoconazole. The liquisolid tablets were formulated with liquid medications, namely Propylene Glycol (PG) drug concentrations, 60% w/w, 70% w/w and 80% w/w. Avicel pH102 was used as a carrier material, Aerosil 200 as a coating material and Sodium starch glycollate as a super-disintegrant. Quality control tests, such as uniformity of tablet weight, uniformity of drug content, tablet hardness, friability test, disintegration and dissolution tests were performed to evaluate prepared tablets. For further confirmation of results the liquisolid compacts were evaluated by XRD and FTIR studies to prove that, solubility of Ketoconazole has been increased by liquisolid compact technique. From the results obtained, it was be speculated that such systems exhibit enhanced drug release profiles due to increased wetting properties and surface of drug available for dissolution. As liquisolid compacts demonstrated significantly higher drug release rates, in PG as compared to directly compressible tablets and conventional wet granulation, we lead to conclusion that it could be a promising strategy in improving the dissolution of poor water soluble drugs and formulating immediate release solid dosage forms.  


2012 ◽  
Vol 4 (2) ◽  
pp. 42-47
Author(s):  
Irwin Dewan ◽  
SM Ashraful Islam ◽  
Mohammad Shahriar

The main objective of the current study was to formulate poorly water soluble drug Spirinolactone by using solid dispersion technique in order to achieve a better dissolution rate which would further help in enhancing oral bioavailability. Solid dispersions were prepared using two methods; solvent method and fusion method. Solid dispersion was prepared by using polymers, such as Hydroxy propylymethyl cellulose (HPMC 6cp), Hydroxy propyl cellulose (HPC), Sodium carboxymethylcellulose (Na-CMC), Povidone K12, Povidone K30, Poloxamer 407. Solid dispersions containing Spironolactone with HPC (96.81%), HPMC 6cp (93.05%), Poloxamer 407 (90.84%) and Na-CMC (89.93%) provided higher release rate than the release rate of solid dispersion containing only Spironolactone (35.27%), and Spironolactone with Povidone K12 (76.17%), Povidone K30 (67.92%). So the present study revealed that the solid dispersion may be an ideal means of drug delivery system for poorly water soluble drugs. Further study in this field was required to establish these drug delivery systems so that in future it can be used effectively in commercial basis.DOI: http://dx.doi.org/10.3329/sjps.v4i2.7776S. J. Pharm. Sci. 4(2) 2011: 42-47


1995 ◽  
Vol 125 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Vinod P. Shah ◽  
Assad Noory ◽  
Carol Noory ◽  
Bruce McCullough ◽  
Sanford Clarke ◽  
...  

Author(s):  
HRISHAV DAS PURKAYASTHA ◽  
S. K. IMANUR HOSSIAN

Nanosuspension consists of the pure poorly water-soluble drug without any matrix material suspended in dispersion. The formulation as nanosuspension is an attractive and promising alternative to solve these problems. Nanosuspension technology solved the problem of drugs which are poorly aqueous soluble and less bioavailability. Stability and bioavailability of the drugs can be improved by Nanosuspension technology. Nanosuspensions are promising candidates that can be used for enhancing the dissolution of poorly water-soluble drugs. Preparation of Nanosuspension is simple and applicable to all drugs which are aqueous insoluble. Nanosuspensions are prepared by using wet mill, high-pressure homogenizer, emulsion‐solvent evaporation, melt emulsification method and supercritical fluid techniques. Nanosuspension can be prepared by using stabilizers, organic solvents and other additives such as buffers, salts, polyols, osmogent and cryoprotectant. Nanosuspensions can be delivered by oral,parenteral, pulmonary and ocular routes. Nanosuspensions can also be used for targeted drug delivery when incorporated in the ocular inserts and mucoadhesive hydrogels.


Author(s):  
Dhaval J. Patel ◽  
Jayvadan K. Patel ◽  
Vikram M. Pandya ◽  
Ritu D. Patel

Low oral bioavailability of poorly water-soluble drugs poses a great challenge during drug development. Poorly water-soluble compounds are difficult to develop as drug products using conventional formulation techniques and are frequently abandoned early in discovery. The aim of the this study was to improve the dissolution rate of a poorly water-soluble drug famotidine, by a nanoprecipitation technique. Selected parameters of the nanoprecipitation method, such as the amount of Lutrol F-68 and stirring speed were varied so as to obtain drug nanoparticles. The combination of lowest amount of stabilizer with low speed yield bluish white transparent nanosuspensions with the smallest average particle size (566 nm). In contrast to the very slow dissolution rate of pure famotidine, the nanosuspension of the drug considerably enhanced the dissolution rate. Nanosuspension prepared with 0.25% Lutrol F-68   with 1000 rpm showed the most improvement in dissolution rate of famotidine. The formulation of famotidine as a nanosuspension was very successful in enhancing dissolution rate, more than 42% of the drug being dissolved in the first 10 min (batch F1) compared to less than 2.5% of the micronized drug (batch F7).


Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 692 ◽  
Author(s):  
Hui-Won Cho ◽  
Seung-Hoon Baek ◽  
Beom-Jin Lee ◽  
Hyo-Eon Jin

Amorphous solid dispersions (ASDs) improve the oral delivery of poorly water-soluble drugs. ASDs of olanzapine (OLZ), which have a high melting point and low solubility, are performed using a complicated process. Three-dimensional (3D) printing based on hot-melt pneumatic extrusion (HMPE) is a simplified method for producing ASDs. Unlike general 3D printing, printlet extrusion is possible without the preparation of drug-loaded filaments. By heating powder blends, direct fused deposition modeling (FDM) printing through a nozzle is possible, and this step produces ASDs of drugs. In this study, we developed orodispersible films (ODFs) loaded with OLZ as a poorly water-soluble drug. Various ratios of film-forming polymers and plasticizers were investigated to enhance the printability and optimize the printing temperature. Scanning electron microscopy (SEM) showed the surface morphology of the film for the optimization of the polymer carrier ratios. Differential scanning calorimetry (DSC) was used to evaluate thermal properties. Powder X-ray diffraction (PXRD) confirmed the physical form of the drug during printing. The 3D printed ODF formulations successfully loaded ASDs of OLZ using HMPE. Our ODFs showed fast disintegration patterns within 22 s, and rapidly dissolved and reached up to 88% dissolution within 5 min in the dissolution test. ODFs fabricated using HMPE in a single process of 3D printing increased the dissolution rates of the poorly water-soluble drug, which could be a suitable formulation for fast drug absorption. Moreover, this new technology showed prompt fabrication feasibility of various formulations and ASD formation of poorly water-soluble drugs as a single process. The immediate dissolution within a few minutes of ODFs with OLZ, an atypical antipsychotic, is preferred for drug compliance and administration convenience.


Sign in / Sign up

Export Citation Format

Share Document