The Utilization of MS-MLPA as the First-Line Test for the Diagnosis of Prader–Willi Syndrome in Thai Patients

Author(s):  
Chanita Prapasrat ◽  
Preyaporn Onsod ◽  
Veerawat Korkiatsakul ◽  
Budsaba Rerkamnuaychoke ◽  
Duangrurdee Wattanasirichaigoon ◽  
...  

AbstractPrader–Willi syndrome (PWS) is a genetic disorder caused by the expression disruption of genes on the paternally inherited allele of chromosome 15q11.2-q13. Apart from clinical diagnostic criteria, PWS is confirmed by genetic testing. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) is one of the molecular techniques used to analyze this syndrome. This study aimed to evaluate the concordance of the test results of MS-MLPA with conventional techniques in the diagnosis of PWS in Thai patients. Forty leftover specimens from routine genetic testing (MS-PCR and FISH) were tested to obtain MS-MLPA results. By comparison, perfect concordance was shown between the result of MS-MLPA and those of conventional techniques. In conclusion, MS-MLPA is an accurate and cost-effective assay that can be used to confirm PWS diagnosis with explicit deletion of affected genes.

2013 ◽  
Vol 42 (s1) ◽  
pp. 97-97
Author(s):  
F. P. Scott ◽  
K. Murphy ◽  
L. Carey ◽  
W. Greville ◽  
N. Mansfield ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Zefu Chen ◽  
◽  
Zihui Yan ◽  
Chenxi Yu ◽  
Jiaqi Liu ◽  
...  

Abstract Background We previously reported a novel clinically distinguishable subtype of congenital scoliosis (CS), namely, TBX6-associated congenital scoliosis (TACS). We further developed the TBX6-associated CS risk score (TACScore), a multivariate phenotype-based model to predict TACS according to the patient’s clinical manifestations. In this study, we aimed to evaluate whether using the TACScore as a screening method prior to performing whole-exome sequencing (WES) is more cost-effective than using WES as the first-line genetic test for CS. Methods We retrospectively collected the molecular data of 416 CS patients in the Deciphering disorders Involving Scoliosis and COmorbidities (DISCO) study. A decision tree was constructed to estimate the cost and the diagnostic time required for the two alternative strategies (TACScore versus WES). Bootstrapping simulations and sensitivity analyses were performed to examine the distributions and robustness of the estimates. The economic evaluation considered both the health care payer and the personal budget perspectives. Results From the health care payer perspective, the strategy of using the TACScore as the primary screening method resulted in an average cost of $1074.2 (95%CI: $1044.8 to $1103.5) and an average diagnostic duration of 38.7d (95%CI: 37.8d to 39.6d) to obtain a molecular diagnosis for each patient. In contrast, the corresponding values were $1169.6 (95%CI: $1166.9 to $1172.2) and 41.4d (95%CI: 41.1d to 41.7d) taking WES as the first-line test (P < 0.001). From the personal budget perspective, patients who were predicted to be positive by the TACScore received a result with an average cost of $715.1 (95%CI: $594.5 to $835.7) and an average diagnostic duration of 30.4d (95%CI: 26.3d to 34.6d). Comparatively, the strategy of WES as the first-line test was estimated to have significantly longer diagnostic time with an average of 44.0d (95%CI: 43.2d to 44.9d), and more expensive with an average of $1193.4 (95%CI: $1185.5 to $1201.3) (P < 0.001). In 100% of the bootstrapping simulations, the TACScore strategy was significantly less costly and more time-saving than WES. The sensitivity analyses revealed that the TACScore strategy remained cost-effective even when the cost per WES decreased to $8.8. Conclusions This retrospective study provides clinicians with economic evidence to integrate the TACScore into clinical practice. The TACScore can be considered a cost-effective tool when it serves as a screening test prior to performing WES.


1989 ◽  
Vol 35 (5) ◽  
pp. 828-830 ◽  
Author(s):  
J M Beaman ◽  
J S Woodhead

Abstract We assessed a new strategy for thyroid-function testing that involves simultaneous measurement of free thyroxin and thyrotropin, both in singletons, with chemiluminescent assays. Using our current strategy of measuring free thyroxin as a first-line test with selected back-up testing, the results show that, of 810 patients without previous thyroid disease, 445 received back-up tests. Of these, 345 were euthyroid, whereas 63 classified as euthyroid and not selected for further testing in fact had abnormal back-up test results. Evidently the simultaneous measurement of free thyroxin and thyrotropin with the "Magic Lite" technology greatly improves diagnostic efficiency compared with this current strategy.


Author(s):  
Katrina E. Kotzer ◽  
Sarah E. Kerr

Molecular genetic testing has been around since the discovery and offering of clinical testing for the first gene sequenced. However, in recent years the methods and scope of molecular genetic testing have evolved significantly to encompass next-generation sequencing, multigene panels, and whole exome and genome testing. With this evolution in molecular methods, the nomenclature and variant evaluation and annotation processes are crucial for the systematic and standard interpretation of molecular test results. This chapter will provide the laboratory genetic counselor with information about the common sample types analyzed by molecular techniques for the purposes of genetic testing and the various methodologies available and their limitations. Guidelines are given for the standard approach to molecular variant reporting with respect to nomenclature and variant classification.


2010 ◽  
Vol 63 (8) ◽  
pp. 669-674 ◽  
Author(s):  
Jeffrey Barron

The aim of this article is to provide knowledge of the origin of catecholamines and metabolites so that there can be an informed approach to the methods for biochemical screening for a possible phaeochromocytoma; The article includes a review of catecholamine and metadrenaline metabolism, with methods used in biochemical screening. In the adrenal medulla and a phaeochromocytoma, catecholamines continuously leak from chromaffin granules into the cytoplasm and are converted to metadrenalines. For a phaeochromocytoma to become biochemically detectable, metnoradrenaline secretion needs to rise fourfold, whereas noradrenaline secretion needs to rise 15-fold. The prevalence of a sporadic phaeochromocytoma is low; therefore false-positive results exceed true-positive results. Assay sensitivity is high because it is important not to miss a possible phaeochromocytoma. The use of urine or plasma fractionated metadrenalines as the first-line test has been recommended due to improved sensitivity. A negative result excludes a phaeochromocytoma. Only after a sporadic phaeochromocytoma has been diagnosed biochemically is it cost effective to request imaging. Sensitivities and specificities of the assays differ according to pre-test probabilities of the presence of a phaeochromocytoma, with hereditary and incidentalomas having a higher pre-test probability than sporadic phaeochromocytoma. In conclusion, in screening for a possible phaeochromocytoma, biochemical investigations should be completed first to exclude or establish the diagnosis. The preferred biochemical screening test is fractionated metadrenalines, including methoxytyramine so as not to miss dopamine-secreting tumours.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1446
Author(s):  
Heather H. Tso ◽  
Leonardo Galindo-González ◽  
Stephen E. Strelkov

Clubroot, caused by Plasmodiophora brassicae, is one of the most detrimental threats to crucifers worldwide and has emerged as an important disease of canola (Brassica napus) in Canada. At present, pathotypes are distinguished phenotypically by their virulence patterns on host differential sets, including the systems of Williams, Somé et al., the European Clubroot Differential set, and most recently the Canadian Clubroot Differential set and the Sinitic Clubroot Differential set. Although these are frequently used because of their simplicity of application, they are time-consuming, labor-intensive, and can lack sensitivity. Early, preventative pathotype detection is imperative to maximize productivity and promote sustainable crop production. The decreased turnaround time and increased sensitivity and specificity of genotypic pathotyping will be valuable for the development of integrated clubroot management plans, and interest in molecular techniques to complement phenotypic methods is increasing. This review provides a synopsis of current and future molecular pathotyping platforms for P. brassicae and aims to provide information on techniques that may be most suitable for the development of rapid, reliable, and cost-effective pathotyping assays.


Sign in / Sign up

Export Citation Format

Share Document