scholarly journals Current and Future Pathotyping Platforms for Plasmodiophora brassicae in Canada

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1446
Author(s):  
Heather H. Tso ◽  
Leonardo Galindo-González ◽  
Stephen E. Strelkov

Clubroot, caused by Plasmodiophora brassicae, is one of the most detrimental threats to crucifers worldwide and has emerged as an important disease of canola (Brassica napus) in Canada. At present, pathotypes are distinguished phenotypically by their virulence patterns on host differential sets, including the systems of Williams, Somé et al., the European Clubroot Differential set, and most recently the Canadian Clubroot Differential set and the Sinitic Clubroot Differential set. Although these are frequently used because of their simplicity of application, they are time-consuming, labor-intensive, and can lack sensitivity. Early, preventative pathotype detection is imperative to maximize productivity and promote sustainable crop production. The decreased turnaround time and increased sensitivity and specificity of genotypic pathotyping will be valuable for the development of integrated clubroot management plans, and interest in molecular techniques to complement phenotypic methods is increasing. This review provides a synopsis of current and future molecular pathotyping platforms for P. brassicae and aims to provide information on techniques that may be most suitable for the development of rapid, reliable, and cost-effective pathotyping assays.

2013 ◽  
Vol 62 (10) ◽  
pp. 1540-1544 ◽  
Author(s):  
Rachana Solanki ◽  
Lavanya Vanjari ◽  
Nagapriyanka Ede ◽  
Akhila Gungi ◽  
Amarendranath Soory ◽  
...  

Carbapenem-resistant pathogens cause infections associated with significant morbidity and mortality. This study evaluates the use of the loop-mediated isothermal amplification (LAMP) assay for rapid and cost-effective detection of bla NDM-1 and bla KPC genes among carbapenem-resistant Gram-negative bacteria in comparison with conventional PCR and existing phenotypic methods. A total of 60 carbapenem-resistant clinical isolates [Escherichia coli (15), Klebsiella pneumoniae (22), Acinetobacter baumannii (23)] were screened for the presence of carbapenemases (bla KPC and bla NDM-1) using phenotypic methods such as the modified Hodge test (MHT) and combined disc test (CDT) and molecular methods such as conventional PCR and LAMP assay. In all, 47/60 isolates (78.3 %) were MHT positive while 48 isolates were positive by CDT [46.6 % positive with EDTA, 30 % with 3′ aminophenylboronic acid (APB) plus EDTA and 1.6 % with APB alone]. Isolates showing CDT positivity with EDTA or APB contained bla NDM-1 and bla KPC genes, respectively. bla NDM-1 was present as a lone gene in 28 isolates (46.7 %) and present together with the bla KPC gene in 19 isolates (31.7 %). Only one E. coli isolate had a lone bla KPC gene. The LAMP assay detected either or both bla NDM-1 and bla KPC genes in four isolates that were missed by conventional PCR. Neither gene could be detected in 12 (20 %) isolates. The LAMP assay has greater sensitivity, specificity and rapidity compared to the phenotypic methods and PCR for the detection of bla NDM-1 and bla KPC. With a turnaround time of only 2–3 h, the LAMP assay can be considered a point-of-care assay.


2011 ◽  
Vol 39 (3) ◽  
pp. 193-209 ◽  
Author(s):  
H. Surendranath ◽  
M. Dunbar

Abstract Over the last few decades, finite element analysis has become an integral part of the overall tire design process. Engineers need to perform a number of different simulations to evaluate new designs and study the effect of proposed design changes. However, tires pose formidable simulation challenges due to the presence of highly nonlinear rubber compounds, embedded reinforcements, complex tread geometries, rolling contact, and large deformations. Accurate simulation requires careful consideration of these factors, resulting in the extensive turnaround time, often times prolonging the design cycle. Therefore, it is extremely critical to explore means to reduce the turnaround time while producing reliable results. Compute clusters have recently become a cost effective means to perform high performance computing (HPC). Distributed memory parallel solvers designed to take advantage of compute clusters have become increasingly popular. In this paper, we examine the use of HPC for various tire simulations and demonstrate how it can significantly reduce simulation turnaround time. Abaqus/Standard is used for routine tire simulations like footprint and steady state rolling. Abaqus/Explicit is used for transient rolling and hydroplaning simulations. The run times and scaling data corresponding to models of various sizes and complexity are presented.


2020 ◽  
Vol 13 (1) ◽  
pp. 309
Author(s):  
George N. Zaimes ◽  
Valasia Iakovoglou

Riparian areas, especially in the Mediterranean, offer many ecosystem services for the welfare of society benefits from their sustainable management. This study presents different tools used to assess riparian areas of Greece and their results. Riparian areas with different land-uses/vegetation covers along streams or torrents were assessed. The assessment tools were visual protocols, bioindicators, geographic information systems (GIS), vegetation indices, and a model. These tools differ in scale, accuracy, and difficulty of implementation. The riparian areas had Low and Moderate quality in Greece because of agricultural activities and hydrologic alterations. Vegetation appeared more important for the integrity of riparian areas than stream flow (perennial or intermittent). In addition, territorial variables (distance from dam and sea) were more influential compared to climatic variables. Visual protocols and GIS were effective for preliminary assessments. GIS can be applied at a greater scale but was less accurate than the protocols. Bioindicators can provide more cost-effective monitoring than physicochemical water variables. Finally, vegetation indices and models can be used for larger spatial and temporal scales, but require specialized personnel. Overall, riparian areas of Greece seem to be degraded, and monitoring would contribute to the development of a database on riparian areas that should form the basis for sustainable management plans in Greece.


2020 ◽  
Author(s):  
Muhammad Zubair ◽  
Muhammad Qasim Mehmood ◽  
Kashif Riaz ◽  
Amna Zubair ◽  
Ali Arif

<p>This paper presents a compact, cost-effective, and contactless fractal modified EBG-based microwave sensing platform for dielectric characterization of liquids by analyzing the variation in the reflection coefficient of an antenna. The reported design is composed of a triangular-shaped antenna (0.323λ­<sub>o </sub>x 0.323λ­<sub>o</sub>) placed over a 3 x 3 array of Cesaro fractal based EBG plane (0.7λ­<sub>o</sub> x 0.7λ­<sub>o</sub>) operating at 2.45 GHz. A significant enhancement of the E-field in the sensing region has been achieved with the incorporation of Cesaro fractals in the EBG plane which results in increased sensitivity and compactness. To validate its performance, absolute solutions of butan-1-ol, methanol, and water are loaded, and a maximum measured sensitivity of 0.875% and a maximum quality factor of 90.05 is achieved. Moreover, a maximum RMS error in retrieved values of dielectric constant and loss tangent of liquid under test is found to be 1.092% and 0.813%, respectively. Our demonstrated EBG-based sensor has a compact footprint with good precision, affordability, and ease of operation in detecting liquids for microwave sensing applications. </p><p><br></p>


By continuous and rapid growth in industrialization as well as population, the agricultural lands are also becoming less and less continuously day by day which results in increase in the population of small land holders. In addition to this, because of continuous decreasing production the youth of the villages are also migrating in big cities for the employment, resulting decreasing manpower essential to perform various seedbed operations in the villages. Hence, it is the need of time for small farmers having small agricultural land and having less crop production to introduce the cost-effective farm mechanization so that they can improve production rate. Rotavator is the best option available to achieve this landmark as it is already proved that seedbed prepared by using rotavator gives highest benefit to cost ratio. For this experimental study the whole land of 9 acre area is divided into 18 plots of equal size in area. The combination of method of seedbed preparation and use of fertilizers were the preliminary criteria. The categories of fertilizer according to quantity are discussed earlier which are 50kg, 35kg and 65kg per acre respectively. The quantities of organic fertilizer used are 45kg and 60kg per acre of agricultural land for both seedbeds which are prepared manually and by using rotavator. The highest production of Pigeon Pea was obtained of 814kg was from the plot whose seedbed is prepared by using agricultural machine called rotavator and organic fertilizer; next highest production is obtained of 802 kg from the plot whose seedbed is prepared by using rotavator and the fertilizer used was chemical fertilizer. The minimum production of Pigeon Pea which is 690 kg was obtained in the plot whose seedbed was prepared manually and chemical fertilizer was used.


2011 ◽  
Vol 10 (1) ◽  
pp. 77
Author(s):  
Fernanda Machado Fonseca ◽  
Synara Cecília De Santana ◽  
Marcela Machado Fonseca ◽  
Ana Paula Sarreta Terra ◽  
Ronaldo Rodrigues Sarmento

<p class="MsoNormal" style="text-align: justify; text-indent: 36pt; margin: 0cm 0cm 0pt;"><span style="font-family: 'Times New Roman'; font-size: x-small;">A despeito dos avanços tecnológicos em relação ao diagnóstico, à patogênese e ao tratamento, a meningite bacteriana ainda permanece como importante doença de distribuição mundial, cujo diagnóstico se apoia, principalmente, no exame bacteriológico. Mesmo com o avanço das técnicas moleculares, o diagnóstico microbiológico continua sendo amplamente utilizado e, portanto, merece atenção especial. O objetivo deste trabalho foi realizar um levantamento bibliográfico sobre os principais métodos microbiológicos para o diagnóstico das meningites bacterianas e seus principais agentes causadores, visto que a identificação precisa do agente etiológico permite a correta utilização da terapia farmacológica, o que diminui significativamente os riscos de desenvolvimento de sequelas neurológicas. </span><span style="font-family: 'Times New Roman'; font-size: small; text-indent: 36pt;">Abstract:</span></p><span style="font-size: small;"><span style="font-family: Times New Roman;"><span style="mso-ansi-language: PT-BR;"><p class="MsoNormal" style="text-align: justify; margin: 0cm 0cm 0pt; vertical-align: top;"><span style="color: black; mso-ansi-language: EN;" lang="EN">Despite technological advances in the diagnosis, pathogenesis and treatment, bacterial meningitis still remains an important disease of worldwide distribution in which the diagnosis relies mainly on bacteriological examination. Even with the advances in molecular techniques, microbiologic diagnosis is still widely used and therefore deserves special attention. The aim of this study was a literature review on the main microbiological methods for diagnosis of bacterial meningitis and its main agents, since the precise identification of the agent allows the correct use of drug therapy which significantly reduces the risk of developing neurological sequelae.</span></p></span></span></span>


2021 ◽  
Vol 27 ◽  
Author(s):  
Damanpreet Kaur Lang ◽  
Ankita Sood ◽  
Rajwinder Kaur ◽  
Rashmi Arora ◽  
Tapan Behl

Abstract-: Breast cancer is the most common type of malignancy affecting women worldwide and also being the mostly diagnosed one. Mammography being the gold standard for diagnosis but there are high chances that it can give false- negative as well false-positive test results. Finding cost-effective, readily available and increased sensitivity as well as specificity for diagnosis is the need right now to decrease the mortality as well as morbidity rate. Application of biomarkers to the clinical use has paved way for a better prognosis, diagnosis, detection, screening and better clinical results. The efficacy of the treatment is enhanced. Biomarkers are known to cause advancement in breast cancer study and are expected to improve the quality of life in patients. Not only tissue biomarkers but serum and circulating biomarkers are also of significance in patients. This review highlights the particulars about the current use and application of biomarkers in effective prognosis, detection and treatment of breast cancer and also the ones which are currently being studied under trials and have the potential to be advantageous and more specific in the near future.


Drones ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 43 ◽  
Author(s):  
Sathishkumar Samiappan ◽  
Lee Hathcock ◽  
Gray Turnage ◽  
Cary McCraine ◽  
Jonathan Pitchford ◽  
...  

Wildfires can be beneficial for native vegetation. However, wildfires can impact property values, human safety, and ecosystem function. Resource managers require safe, easy to use, timely, and cost-effective methods for quantifying wildfire damage and regeneration. In this work, we demonstrate an approach using an unmanned aerial system (UAS) equipped with a MicaSense RedEdge multispectral sensor to classify and estimate wildfire damage in a coastal marsh. We collected approximately 7.2 km2 of five-band multispectral imagery after a wildfire event in February 2016, which was used to create a photogrammetry-based digital surface model (DSM) and orthomosaic for object-based classification analysis. Airborne light detection and ranging data were used to validate the accuracy of the DSM. Four-band airborne imagery from pre- and post-fire were used to estimate pre-fire health, post-fire damage, and track the vegetation recovery process. Immediate and long-term post-fire classifications, area, and volume of burned regions were produced to track the revegetation progress. The UAS-based classification produced from normalized difference vegetation index and DSM was compared to the Landsat-based Burned Area Reflectance Classification. Experimental results show the potential of using UAS and the presented approach compared to satellite-based mapping in terms of classification accuracies, turnaround time, and spatial and temporal resolutions.


Plant Disease ◽  
2021 ◽  
Vol 105 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Homa Askarian ◽  
Alireza Akhavan ◽  
Victor P. Manolii ◽  
Tiesen Cao ◽  
Sheau-Fang Hwang ◽  
...  

Clubroot, caused by Plasmodiophora brassicae Woronin, is an important disease of canola (Brassica napus L.) that is managed mainly by planting clubroot-resistant (CR) cultivars. Field isolates of P. brassicae can be heterogeneous mixtures of various pathotypes, making assessments of the genetics of host–pathogen interactions challenging. Thirty-four single-spore isolates were obtained from nine field isolates of the pathogen collected from CR canola cultivars. The virulence patterns of the single-spore and field isolates were assessed on the 13 host genotypes of the Canadian Clubroot Differential (CCD) set, which includes the differentials of Williams and Somé et al. Indices of disease (IDs) severity of 25, 33, and 50% (±95% confidence interval) were compared as potential thresholds to distinguish between resistant and susceptible reactions, with an ID of 50% giving the most consistent responses for pathotype classification purposes. With this threshold, 13 pathotypes could be distinguished based on the CCD system, 7 on the differentials of Williams, and 3 on the hosts of Somé et al. The highest correlations were observed among virulence matrices generated using the three threshold IDs on the CCD set. Genetically homogeneous single-spore isolates gave a clearer profile of the P. brassicae pathotype structure. Novel pathotypes, not reported in Canada previously, were identified among the isolates. This large collection of single-spore isolates can serve as a reference in screening and breeding for clubroot resistance.


2010 ◽  
Vol 1 (4) ◽  
pp. 35-48
Author(s):  
Anant R. Koppar ◽  
Venugopalachar Sridhar

Healthcare Delivery Systems are becoming overloaded in developed and developing countries. It is imperative that more efficient and cost effective processes be employed by innovative applications of technology in the delivery system. One such process in Haematology that needs attention is “Generation of report on the Differential Count of Blood”. Most rural centers in India still employ traditional, manual processes to identify and count White Blood Cells under a microscope. This traditional method of manually counting the white blood cells is prone to human error and time consuming. Medical Imaging with innovative application of algorithms can be used for recognizing and analyzing the images from blood smears to provide an efficient alternative for differential counting and reporting. In this regard, the objective of this paper is to provide a simple and pragmatic software system built on innovative yet simple imaging algorithms for achieving better efficiency and accuracy of results. The resulting work-flow process has enabled truly practical tele-pathology by enabling e-collaboration between lesser skilled technicians and more skilled experts, which cuts down the total turnaround time for differential count reporting from days to minutes. The system can be extended to detect malarial parasites in blood and also cancerous cells.


Sign in / Sign up

Export Citation Format

Share Document