scholarly journals Rapid Transient Production of a Monoclonal Antibody Neutralizing the Porcine Epidemic Diarrhea Virus (PEDV) in Nicotiana benthamiana and Lactuca sativa

Planta Medica ◽  
2017 ◽  
Vol 83 (18) ◽  
pp. 1412-1419 ◽  
Author(s):  
Kaewta Rattanapisit ◽  
Anchalee Srijangwad ◽  
Taksina Chuanasa ◽  
Suchada Sukrong ◽  
Angkana Tantituvanont ◽  
...  

AbstractPorcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration, weight loss, and high mortality rate in neonatal piglets. Porcine epidemic diarrhea (PED) has been reported in Europe, America, and Asia including Thailand. The disease causes substantial losses to the swine industry in many countries. Presently, there is no effective PEDV vaccine available. In this study, we developed a plant-produced monoclonal antibody (mAb) 2C10 as a prophylactic candidate to prevent the PEDV infection. Recently, plant expression systems have gained interest as an alternative for the production of antibodies because of many advantages, such as low production cost, lack of human and animal pathogen, large scalability, etc. The 2C10 mAb was transiently expressed in Nicotiana benthamiana and lettuce using geminiviral vector. After purification by protein A affinity chromatography, the antibody was tested for the binding and neutralizing activity against PEDV. Our result showed that the plant produced 2C10 mAb can bind to the virus and also inhibit PEDV infection in vitro. These results show excellent potential for a plant-expressed 2C10 as a PEDV prophylaxis and a diagnostic for PEDV infection.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoqian Zhang ◽  
Chang Li ◽  
Bingzhou Zhang ◽  
Zhonghua Li ◽  
Wei Zeng ◽  
...  

AbstractThe variant virulent porcine epidemic diarrhea virus (PEDV) strain (YN15) can cause severe porcine epidemic diarrhea (PED); however, the attenuated vaccine-like PEDV strain (YN144) can induce immunity in piglets. To investigate the differences in pathogenesis and epigenetic mechanisms between the two strains, differential expression and correlation analyses of the microRNA (miRNA) and mRNA in swine testicular (ST) cells infected with YN15, YN144, and mock were performed on three comparison groups (YN15 vs Control, YN144 vs Control, and YN15 vs YN144). The mRNA and miRNA expression profiles were obtained using next-generation sequencing (NGS), and the differentially expressed (DE) (p-value < 0.05) mRNA and miRNA were obtained using DESeq R package. mRNAs targeted by DE miRNAs were predicted using the miRanda algortithm. 8039, 8631 and 3310 DE mRNAs, and 36, 36, and 22 DE miRNAs were identified in the three comparison groups, respectively. 14,140, 15,367 and 3771 DE miRNA–mRNA (targeted by DE miRNAs) interaction pairs with negatively correlated expression patterns were identified, and interaction networks were constructed using Cytoscape. Six DE miRNAs and six DE mRNAs were randomly selected to verify the sequencing data by real-time relative quantitative reverse transcription polymerase chain reaction (qRT-PCR). Based on bioinformatics analysis, we discovered the differences were mostly involved in host immune responses and viral pathogenicity, including NF-κB signaling pathway and bacterial invasion of epithelial cells, etc. This is the first comprehensive comparison of DE miRNA–mRNA pairs in YN15 and YN144 infection in vitro, which could provide novel strategies for the prevention and control of PED.


Virus Genes ◽  
2016 ◽  
Vol 52 (6) ◽  
pp. 877-882 ◽  
Author(s):  
Haiyan Shen ◽  
Chunhong Zhang ◽  
Pengju Guo ◽  
Zhicheng Liu ◽  
Minhua Sun ◽  
...  

2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Yixuan Hou ◽  
Tea Meulia ◽  
Xiang Gao ◽  
Linda J. Saif ◽  
Qiuhong Wang

ABSTRACTPorcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets. The PEDV spike (S) protein contains two intracellular sorting motifs, YxxΦ (tyrosine-based motif YEVF or YEAF) and KVHVQ at the cytoplasmic tail, yet their functions have not been fully elucidated. Some Vero cell-adapted and/or attenuated PEDV variants contain ablations in these two motifs. We hypothesized that these motifs contribute to viral pathogenicity. By transiently expressing PEDV S proteins with mutations in the motifs, we confirmed that the motif KVHVQ is involved in retention of the S proteins in the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC). In addition, we showed that the YxxΦ motif triggers endocytosis of S proteins. These two motifs synergistically regulate the level of S expressed on the cell surface. To investigate their role in viral pathogenicity, we generated three recombinant PEDVs by introducing deletions or a mutation in the two motifs of the infectious clone of PEDV PC22A strain (icPC22A): (i) icΔ10aa (ΔYxxΦEKVHVQ), (ii) icΔ5aa (ΔKVHVQ), and (iii) icYA (Y1378A, to an inactivated motif, AEVF). Infection of Vero cells with icΔ10aa resulted in larger syncytia and more virions, with reduced numbers of S protein projections on the surface compared with icPC22A. Furthermore, we orally inoculated five groups of 5-day-old gnotobiotic piglets with the three mutants, icPC22A, or a mock treatment. Mutant icΔ10aa caused less severe diarrhea rate and significantly milder intestinal lesions than icPC22A, icΔ5aa, and icYA. These data suggest that the deletion of both motifs can reduce the virulence of PEDV in piglets.IMPORTANCEMany coronaviruses (CoVs) possess conserved motifs YxxΦ and/or KxHxx/KKxx in the cytoplasmic tail of the S protein. The KxHxx/KKxx motif has been identified as the ER retrieval signal, but the function of the YxxΦ motif in the intracellular sorting of CoV S proteins remains controversial. In this study, we showed that the YxxΦ of PEDV S protein is an endocytosis signal. Furthermore, using reverse genetics technology, we evaluated its role in PEDV pathogenicity in neonatal piglets. Our results explain one attenuation mechanism of Vero cell-adapted PEDV variants lacking functional YxxΦ and KVHVQ motifs. Knowledge from this study may aid in the design of efficacious live attenuated vaccines against PEDV, as well as other CoVs bearing the same motif in their S protein.


Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 214 ◽  
Author(s):  
Fusheng Si ◽  
Xiaoxia Hu ◽  
Chenyang Wang ◽  
Bingqing Chen ◽  
Ruiyang Wang ◽  
...  

The genomes of coronaviruses carry accessory genes known to be associated with viral virulence. The single accessory gene of porcine epidemic diarrhea virus (PEDV), ORF3, is dispensable for virus replication in vitro, while viral mutants carrying ORF3 truncations exhibit an attenuated phenotype of which the underlying mechanism is unknown. Here, we studied the effect of ORF3 deletion on the proliferation of PEDV in Vero cells. To this end, four recombinant porcine epidemic diarrhea viruses (PEDVs) were rescued using targeted RNA recombination, three carrying the full-length ORF3 gene from different PEDV strains, and one from which the ORF3 gene had been deleted entirely. Our results showed that PEDVs with intact or naturally truncated ORF3 replicated to significantly higher titers than PEDV without an ORF3. Further characterization revealed that the extent of apoptosis induced by PEDV infection was significantly lower with the viruses carrying an intact or C-terminally truncated ORF3 than with the virus lacking ORF3, indicating that the ORF3 protein as well as its truncated form interfered with the apoptosis process. Collectively, we conclude that PEDV ORF3 protein promotes virus proliferation by inhibiting cell apoptosis caused by virus infection. Our findings provide important insight into the role of ORF3 protein in the pathogenicity of PEDV.


Virus Genes ◽  
2015 ◽  
Vol 51 (2) ◽  
pp. 252-259 ◽  
Author(s):  
Haiyan Shen ◽  
Chunhong Zhang ◽  
Pengju Guo ◽  
Zhicheng Liu ◽  
Jianfeng Zhang

2018 ◽  
Vol 93 (5) ◽  
Author(s):  
Liang Li ◽  
Fang Fu ◽  
Shanshan Guo ◽  
Hongfeng Wang ◽  
Xijun He ◽  
...  

ABSTRACTPorcine epidemic diarrhea virus (PEDV), a member of the group of alphacoronaviruses, is the pathogen of a highly contagious gastrointestinal swine disease. The elucidation of the events associated with the intestinal epithelial response to PEDV infection has been limited by the absence of goodin vitroporcine intestinal models that recapitulate the multicellular complexity of the gastrointestinal tract. Here, we generated swine enteroids from the intestinal crypt stem cells of the duodenum, jejunum, or ileum and found that the generated enteroids are able to satisfactorily recapitulate the complicated intestinal epitheliumin vivoand are susceptible to infection by PEDV. PEDV infected multiple types of cells, including enterocytes, stem cells, and goblet cells, and exhibited segmental infection discrepancies compared with ileal enteroids and colonoids, and this finding was verifiedin vivo. Moreover, the clinical isolate PEDV-JMS propagated better in ileal enteroids than the cell-adapted isolate PEDV-CV777, and PEDV infection suppressed interferon (IFN) production early during the infection course. IFN lambda elicited a potent antiviral response and inhibited PEDV in enteroids more efficiently than IFN alpha (IFN-α). Therefore, swine enteroids provide a novelin vitromodel for exploring the pathogenesis of PEDV and for thein vitrostudy of the interplay between a host and a variety of swine enteric viruses.IMPORTANCEPEDV is a highly contagious enteric coronavirus that causes significant economic losses, and the lack of a goodin vitromodel system is a major roadblock to an in-depth understanding of PEDV pathogenesis. Here, we generated a porcine intestinal enteroid model for PEDV infection. Utilizing porcine intestinal enteroids, we demonstrated that PEDV infects multiple lineages of the intestinal epithelium and preferably infects ileal enteroids over colonoids and that enteroids prefer to respond to IFN lambda 1 over IFN-α. These events recapitulate the events that occurin vivo. This study constitutes the first use of a primary intestinal enteroid model to investigate the susceptibility of porcine enteroids to PEDV and to determine the antiviral response following infection. Our study provides important insights into the events associated with PEDV infection of the porcine intestine and provides a valuablein vitromodel for studying not only PEDV but also other swine enteric viruses.


2014 ◽  
Vol 2 (3) ◽  
Author(s):  
P. K. Lawrence ◽  
E. Bumgardner ◽  
R. F. Bey ◽  
D. Stine ◽  
R. E. Bumgarner

2021 ◽  
Author(s):  
Yubei Tan ◽  
Limeng Sun ◽  
Gang Wang ◽  
Yuejun Shi ◽  
Wanyu Dong ◽  
...  

Porcine epidemic diarrhea virus (PEDV) is an enteric pathogen in the swine industry, causing high mortality in neonatal piglets. Efficient PEDV infection usually relies on the presence of trypsin, yet the mechanism of trypsin dependency is ambiguous. Here, we identified two PEDV strains, trypsin-enhanced YN200 and trypsin-independent DR13, in which the spike (S) protein of YN200 exhibits a stronger ability to induce syncytium formation and cleaved by trypsin than that of DR13. Using a full-length infectious YN200 cDNA clone, we confirmed that the S protein is a trypsin dependency determinant by comparison of rYN200 and rYN200-SDR13. To explore the trypsin-associated sites of the YN200 S protein, we then constructed a series of mutations adjacent to the fusion peptide. The results show that the putative S2’ cleavage site (R892G) is not the determinant for virus trypsin dependency. Hence, we generated viruses carrying chimeric S proteins: the S1 subunit, S2 subunit, and S2720∼892 aa domain (NS2’) were individually replaced by the corresponding DR13 sequences. Intriguingly, only the S2 substitution, not the S1 or NS2’ substitutions, provides trypsin-independent growth of YN200. Additionally, the NS2’ recombinant virus significantly abrogated effective infection, indicating a vital role for NS2’ in viral entry. These findings suggest that the trypsin dependency of PEDV is mainly controlled by mutations in the S2 subunit rather than directly trypsin cleavage site. Importance With the emergence of new variants, PEDV remains a major problem in the global swine industry. Efficient PEDV infection usually requires trypsin, while the mechanism of trypsin dependency is complex. Here, we used two PEDV strains, trypsin-enhanced YN200 and trypsin-independent DR13, and results showed that the S protein determined PEDV trypsin dependency by using a reverse genetic system of YN200. The S2 subunit was verified as the main portion of PEDV trypsin dependency, though the putative S2’ site mutation cannot render trypsin-independent growth of YN200. Finally, these results provide some different insight to the PEDV trypsin dependency and might inspire vaccine development.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 391 ◽  
Author(s):  
Pengwei Zhao ◽  
Song Wang ◽  
Zhi Chen ◽  
Jiang Yu ◽  
Rongzhi Tang ◽  
...  

A highly virulent porcine epidemic diarrhea virus (PEDV) appeared in China and spread rapidly to neighbor countries, which have led to great economic losses to the pig industry. In the present study, we isolated a PEDV using Vero cells and serially propagated 100 passages. PEDV SDSX16 was characterized in vitro and in vivo. The viral titers increased to 107.6 TCID50/mL (100th) by serial passages. The spike (S) gene and the whole gene of the SDSX16 virus was fully sequenced to assess the genetic stability and relatedness to previously identified PEDV. Along with successive passage in vitro, there were 18 nucleotides (nt) deletion occurred in the spike (S) gene resulting in a deletion of six amino acids when the SDSX16 strain was passaged to the 64th generation, and this deletion was stable until the P100. However, the ORF1a/b, M, N, E, and ORF3 genes had only a few point mutations in amino acids and no deletions. According to growth kinetics experiments, the SDSX16 deletion strain significantly enhanced its replication in Vero cells since it was passaged to the 64th generation. The animal studies showed that PEDV SDSX16-P10 caused more severe diarrhea and vomiting, fecal shedding, and acute atrophic enteritis than SDSX16-P75, indicating that SDSX16-P10 is enteropathogenic in the natural host, and the pathogenicity of SDSX16 decreased with successive passage in vitro. However, SDSX16-P10 was found to cause lower levels of cytokine expression than SDSX16-P75 using real-time PCR and flow cytometry, such as IL1β, IL6, IFN-β, TNF-α, indicating that SDSX16-P10 might inhibit the expression of cytokines. Our data indicated that successive passage in vitro resulted in virulent attenuation in vivo of the PEDV variant strain SDSX16.


Sign in / Sign up

Export Citation Format

Share Document