Normalization of Cytoplasmic Calcium Response in Pancreatic β-Cells of Spontaneously Diabetic GK Rat by the Treatment with T-1095, a Specific Inhibitor of Renal Na+-Glucose Co-Transporters

2002 ◽  
Vol 34 (4) ◽  
pp. 217-221 ◽  
Author(s):  
K. Yasuda ◽  
Y. Okamoto ◽  
K. Nunoi ◽  
T. Adachi ◽  
N. Shihara ◽  
...  
Endocrinology ◽  
2010 ◽  
Vol 151 (10) ◽  
pp. 4688-4695 ◽  
Author(s):  
Ye Zhang ◽  
Zhifang Xie ◽  
Guangdi Zhou ◽  
Hai Zhang ◽  
Jian Lu ◽  
...  

Pancreatic β-cells can precisely sense glucose stimulation and accordingly adjust their insulin secretion. Fructose-1,6-bisphosphatase (FBPase) is a gluconeogenic enzyme, but its physiological significance in β-cells is not established. Here we determined its physiological role in regulating glucose sensing and insulin secretion of β-cells. Considerable FBPase mRNA was detected in normal mouse islets and β-cell lines, although their protein levels appeared to be quite low. Down-regulation of FBP1 in MIN6 cells by small interfering RNA could enhance the glucose-stimulated insulin secretion (GSIS), whereas FBP1-overexpressing MIN6 cells exhibited decreased GSIS. Inhibition of FBPase activity in islet β-cells by its specific inhibitor MB05032 led to significant increase of their glucose utilization and cellular ATP to ADP ratios and consequently enhanced GSIS in vitro. Pretreatment of mice with the MB05032 prodrug MB06322 could potentiate GSIS in vivo and improve their glucose tolerance. Therefore, FBPase plays an important role in regulating glucose sensing and insulin secretion of β-cells and serves a promising target for diabetes treatment.


2004 ◽  
Vol 381 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Mica OHARA-IMAIZUMI ◽  
Chiyono NISHIWAKI ◽  
Toshiteru KIKUTA ◽  
Shintaro NAGAI ◽  
Yoko NAKAMICHI ◽  
...  

We imaged and analysed the motion of single insulin secretory granules near the plasma membrane in live pancreatic β-cells, from normal and diabetic Goto–Kakizaki (GK) rats, using total internal reflection fluorescence microscopy (TIRFM). In normal rat primary β-cells, the granules that were fusing during the first phase originate from previously docked granules, and those during the second phase originate from ‘newcomers’. In diabetic GK rat β-cells, the number of fusion events from previously docked granules were markedly reduced, and, in contrast, the fusion from newcomers was still preserved. The dynamic change in the number of docked insulin granules showed that, in GK rat β-cells, the total number of docked insulin granules was markedly decreased to 35% of the initial number after glucose stimulation. Immunohistochemistry with anti-insulin antibody observed by TIRFM showed that GK rat β-cells had a marked decline of endogenous insulin granules docked to the plasma membrane. Thus our results indicate that the decreased number of docked insulin granules accounts for the impaired insulin release during the first phase of insulin release in diabetic GK rat β-cells.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xiangchen Kong ◽  
Bingfeng Li ◽  
Yushen Deng ◽  
Xiaosong Ma

Adenylyl cyclase 8 (ADCY8) and Farnesoid X Receptor (FXR) have been identified in pancreatic β-cells and play important roles in insulin secretion. But the mechanisms underlying with respect to the regulation of ADCY8 expression in β-cells, particularly whether FXR is involved, remain unexplored. We now show that ADCY8 expression is decreased in Goto-Kakizaki (GK) rat islets compared with healthy Wistar controls. We also found that reduced ADCY8 is associated with decreased expression of FXR. Consistently, ADCY8 expression was suppressed by the knockdown of FXR in INS-1 832/13 cells, as well as the islets from FXR knockout mice. On the contrary, ADCY8 expression was increased in FXR-overexpressed INS-1 832/13 cells or in the case of FXR activation. Mechanistically, FXR directly binds to Adcy8 promoter and recruits the histone acetyltransferase Steroid Receptor Coactivator 1 (SRC1), thereby resulting in the increased acetylation of histone H3 in Adcy8 locus, promoting Adcy8 gene transcription in β-cells. Thus, this study indicates that FXR is a critical transcription factor that mediates ADCY8 expression in pancreatic β-cells and has characterized the chromatin modification associated with Adcy8 transcription.


2018 ◽  
Vol 150 (7) ◽  
pp. 969-976 ◽  
Author(s):  
Yajamana Ramu ◽  
Yanping Xu ◽  
Zhe Lu

The adenosine triphosphate (ATP)-sensitive (KATP) channels in pancreatic β cells couple the blood glucose level to insulin secretion. KATP channels in pancreatic β cells comprise the pore-forming Kir6.2 and the modulatory sulfonylurea receptor 1 (SUR1) subunits. Currently, there is no high-affinity and relatively specific inhibitor for the Kir6.2 pore. The importance of developing such inhibitors is twofold. First, in many cases, the lack of such an inhibitor precludes an unambiguous determination of the Kir6.2's role in certain physiological and pathological processes. This problem is exacerbated because Kir6.2 knockout mice do not yield the expected phenotypes of hyperinsulinemia and hypoglycemia, which in part, may reflect developmental adaptation. Second, mutations in Kir6.2 or SUR1 that increase the KATP current cause permanent neonatal diabetes mellitus (PNDM). Many patients who have PNDM have been successfully treated with sulphonylureas, a common class of antidiabetic drugs that bind to SUR1 and indirectly inhibit Kir6.2, thereby promoting insulin secretion. However, some PNDM-causing mutations render KATP channels insensitive to sulphonylureas. Conceptually, because these mutations are located intracellularly, an inhibitor blocking the Kir6.2 pore from the extracellular side might provide another approach to this problem. Here, by screening the venoms from >200 animals against human Kir6.2 coexpressed with SUR1, we discovered a small protein of 54 residues (SpTx-1) that inhibits the KATP channel from the extracellular side. It inhibits the channel with a dissociation constant value of 15 nM in a relatively specific manner and with an apparent one-to-one stoichiometry. SpTx-1 evidently inhibits the channel by primarily targeting Kir6.2 rather than SUR1; it inhibits not only wild-type Kir6.2 coexpressed with SUR1 but also a Kir6.2 mutant expressed without SUR1. Importantly, SpTx-1 suppresses both sulfonylurea-sensitive and -insensitive, PNDM-causing Kir6.2 mutants. Thus, it will be a valuable tool to investigate the channel's physiological and biophysical properties and to test a new strategy for treating sulfonylurea-resistant PNDM.


1968 ◽  
Vol 59 (3) ◽  
pp. 479-486 ◽  
Author(s):  
Lars-Ake Idahl ◽  
Bo Hellman

ABSTRACT The combination of enzymatic cycling and fluorometry was used for measuring glucose and glucose-6-phosphate in pancreatic β-cells from obese-hyperglycaemic mice. The glucose level of the β-cells corresponded to that of serum over a wide concentration range. In the exocrine pancreas, on the other hand, a significant barrier to glucose diffusion across the cell membranes was demonstrated. During 5 min of ischaemia, the glucose level remained practically unchanged in the β-cells while it increased in the liver and decreased in the brain. The observation that the pancreatic β-cells are characterized by a relatively low ratio of glucose-6-phosphate to glucose may be attributed to the presence of a specific glucose-6-phosphatase.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ionel Sandovici ◽  
Constanze M. Hammerle ◽  
Sam Virtue ◽  
Yurena Vivas-Garcia ◽  
Adriana Izquierdo-Lahuerta ◽  
...  

AbstractWhen exposed to nutrient excess and insulin resistance, pancreatic β-cells undergo adaptive changes in order to maintain glucose homeostasis. The role that growth control genes, highly expressed in early pancreas development, might exert in programming β-cell plasticity in later life is a poorly studied area. The imprinted Igf2 (insulin-like growth factor 2) gene is highly transcribed during early life and has been identified in recent genome-wide association studies as a type 2 diabetes susceptibility gene in humans. Hence, here we investigate the long-term phenotypic metabolic consequences of conditional Igf2 deletion in pancreatic β-cells (Igf2βKO) in mice. We show that autocrine actions of IGF2 are not critical for β-cell development, or for the early post-natal wave of β-cell remodelling. Additionally, adult Igf2βKO mice maintain glucose homeostasis when fed a chow diet. However, pregnant Igf2βKO females become hyperglycemic and hyperinsulinemic, and their conceptuses exhibit hyperinsulinemia and placentomegalia. Insulin resistance induced by congenital leptin deficiency also renders Igf2βKO females more hyperglycaemic compared to leptin-deficient controls. Upon high-fat diet feeding, Igf2βKO females are less susceptible to develop insulin resistance. Based on these findings, we conclude that in female mice, autocrine actions of β-cell IGF2 during early development determine their adaptive capacity in adult life.


Sign in / Sign up

Export Citation Format

Share Document