Differential gene expression in breast cancer cells exposed to low frequency magnetic fields

2005 ◽  
Vol 127 (04) ◽  
Author(s):  
R Girgert ◽  
C Gründker ◽  
G Emons ◽  
V Hanf
Endocrine ◽  
2013 ◽  
Vol 44 (2) ◽  
pp. 496-503 ◽  
Author(s):  
Nadine A. Binai ◽  
Gert Carra ◽  
Johannes Löwer ◽  
Roswitha Löwer ◽  
Silja Wessler

PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e41333 ◽  
Author(s):  
Kathryn J. Huber-Keener ◽  
Xiuping Liu ◽  
Zhong Wang ◽  
Yaqun Wang ◽  
Willard Freeman ◽  
...  

2018 ◽  
Vol 92 ◽  
pp. S103
Author(s):  
R. Rashidnezhad ◽  
A. Madjid Ansari ◽  
M. Shokrollahy ◽  
H. Sanati ◽  
Z.S. Mesbah Moosavi

2020 ◽  
Vol 21 (8) ◽  
pp. 2952
Author(s):  
Aoshu Xu ◽  
Qian Wang ◽  
Tingting Lin

Breast cancer is a common malignancy threatening women’s health around the world. Despite improved treatments for different subtypes of breast tumors that have been put forward, there still exists a poor therapeutic response and prognosis. Magnetic fields, as a non-invasive therapy, have shown anti-tumor effects in vitro and in vivo; however, the detailed mechanisms involved are still not clear. In this study, we found that in exposure to low-frequency magnetic fields (LF-MFs) with an intensity of 1 mT and frequencies of 50, 125, 200, and 275 Hz, separately, the proliferation of breast cancer cells was inhibited and LF-MF with 200 Hz reached the optimum inhibition effect, on exposure time-dependently. Notably, we found that exposure to LF-MF led to MCF-7 and ZR-75-1 cell apoptosis and cell cycle arrest. Moreover, we also discovered that LF-MF effectively increased the level of reactive oxygen species (ROS), suppressed the PI3K/AKT signaling pathway, and activated glycogen synthase kinase-3β (GSK-3β). We demonstrated that the GSK3β activity contributed to LF-MF-induced cell proliferation inhibition and apoptosis, while the underlying mechanism was associated with the inhibition of PI3K/AKT through increasing the intracellular ROS accumulation. These results indicate that LF-MF with a specific frequency may be an attractive therapy to treat breast cancers.


2019 ◽  
Vol 16 (2) ◽  
pp. 184-197 ◽  
Author(s):  
Hossein Bakhtou ◽  
Asiie Olfatbakhsh ◽  
Abdolkhaegh Deezagi ◽  
Ghasem Ahangari

Background:Breast cancer is one of the common causes of mortality for women in Iran and other parts of the world. The substantial increasing rate of breast cancer in both developed and developing countries warns the scientists to provide more preventive steps and therapeutic measures. This study is conducted to investigate the impact of neurotransmitters (e.g., Dopamine) through their receptors and the importance of cancers via damaging immune system. It also evaluates dopamine receptors gene expression in the women with breast cancer at stages II or III and dopamine receptor D2 (DRD2) related agonist and antagonist drug effects on human breast cancer cells, including MCF-7 and SKBR-3.Methods:The patients were categorized into two groups: 30 native patients who were diagnosed with breast cancer at stages II and III, with the mean age of 44.6 years and they were reported to have the experience of a chronic stress or unpleasant life event. The second group included 30 individuals with the mean age of 39 years as the control group. In order to determine the RNA concentration in all samples, the RNA samples were extracted and cDNA was synthesized. The MCF-7 cells and SKBR-3 cells were treated with dopamine receptors agonists and antagonists. The MTT test was conducted to identify oxidative and reductive enzymes and to specify appropriate dosage at four concentrations of dopamine and Cabergoline on MCF-7 and SKBR-3 cells. Immunofluorescence staining was done by the use of a mixed dye containing acridine orange and ethidiume bromide on account of differentiating between apoptotic and necrotic cells. Flow cytometry assay was an applied method to differentiate necrotic from apoptotic cells.Results:Sixty seven and thirty three percent of the patients were related to stages II and III, respectively. About sixty three percent of the patients expressed ER, while fifty seven percent expressed PR. Thirty seven percent of the patients were identified as HER-2 positive. All types of D2-receptors were expressed in PBMC of patients with breast cancer and healthy individuals. The expression of the whole dopamine receptor subtypes (DRD2-DRD4) was carried out on MCF-7 cell line. The results of RT-PCR confirmed the expression of DRD2 on SKBR-3 cells, whereas the other types of D2- receptors did not have an expression. The remarkable differences in gene expression rates between patients and healthy individuals were revealed in the result of the Real-time PCR analysis. The over expression in DRD2 and DRD4 genes of PBMCs was observed in the patients with breast cancer at stages II and III. The great amount of apoptosis and necrosis occurred after the treatment of MCF-7 cells by Cabergoline from 25 to 100 µmolL-1 concentrations.Conclusion:This study revealed the features of dopamine receptors associated with apoptosis induction in breast cancer cells. Moreover, the use of D2-agonist based on dopamine receptors expression in various breast tumoral cells could be promising as a new insight of complementary therapy in breast cancer.


Sign in / Sign up

Export Citation Format

Share Document