Effects of a low-carbohydrate high-fat diet on body weight development, body composition and growth hormone/IGF-1 axis in rats

2007 ◽  
Vol 115 (08) ◽  
Author(s):  
SJ Caton ◽  
LJ Spangler ◽  
M Bielohuby ◽  
C Reinel ◽  
M Czisch ◽  
...  
2014 ◽  
Vol 5 (3) ◽  
pp. 229-239 ◽  
Author(s):  
K. M. Platt ◽  
R. J. Charnigo ◽  
K. J. Pearson

Maternal high-fat diet consumption and obesity have been shown to program long-term obesity and lead to impaired glucose tolerance in offspring. Many rodent studies, however, use non-purified, cereal-based diets as the control for purified high-fat diets. In this study, primiparous ICR mice were fed purified control diet (10–11 kcal% from fat of lard or butter origin) and lard (45 or 60 kcal% fat) or butter (32 or 60 kcal% fat)-based high-fat diets for 4 weeks before mating, throughout pregnancy, and for 2 weeks of nursing. Before mating, female mice fed the 32 and 60% butter-based high-fat diets exhibited impaired glucose tolerance but those females fed the lard-based diets showed normal glucose disposal following a glucose challenge. High-fat diet consumption by female mice of all groups decreased lean to fat mass ratios during the 4th week of diet treatment compared with those mice consuming the 10–11% fat diets. All females were bred to male mice and pregnancy and offspring outcomes were monitored. The body weight of pups born to 45% lard-fed dams was significantly increased before weaning, but only female offspring born to 32% butter-fed dams exhibited long-term body weight increases. Offspring glucose tolerance and body composition were measured for at least 1 year. Minimal, if any, differences were observed in the offspring parameters. These results suggest that many variables should be considered when designing future high-fat diet feeding and maternal obesity studies in mice.


Author(s):  
Brandon Boland ◽  
Michael B. Mumphrey ◽  
Zheng Hao ◽  
Benji Gill ◽  
R. Leigh Townsend ◽  
...  

Background/Goals: The gut hormone PYY secreted from intestinal L-cells has been implicated in the mechanisms of satiation via Y2-receptor (Y2R) signaling in the brain and periphery and is a major candidate for mediating the beneficial effects of bariatric surgery on appetite and body weight. Methods: Here we assessed the role of Y2R signaling in the response to low- and high-fat diets and its role in the effects of Roux-en-Y gastric bypass (RYGB) surgery on body weight, body composition, food intake, energy expenditure and glucose handling, in global Y2R-deficient (Y2RKO) and wildtype mice made obese on high-fat diet. Results: Both male and female Y2RKO mice responded normally to low- and high-fat diet in terms of body weight, body composition, fasting levels of glucose and insulin, as well as glucose and insulin tolerance for up to 30 weeks of age. Contrary to expectations, obese Y2RKO mice also responded similarly to RYGB compared to WT mice for up to 20 weeks after surgery, with initial hypophagia, sustained body weight loss, and significant improvements in fasting insulin, glucose tolerance, HOMA-IR, and liver weight compared to sham-operated mice. Furthermore, non-surgical Y2RKO mice weight-matched to RYGB showed the same improvements in glycemic control as Y2RKO mice with RYGB that were similar to WT mice. Conclusions: PYY signaling through Y2R is not required for the normal appetite-suppressing and body weight-lowering effects of RYGB in this global knockout mouse model. Potential compensatory adaptations of PYY signaling through other receptor subtypes or other gut satiety hormones such as GLP-1 remain to be investigated.


Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 585 ◽  
Author(s):  
Brandon Boland ◽  
Michael Mumphrey ◽  
Zheng Hao ◽  
Benji Gill ◽  
R. Townsend ◽  
...  

Background/Goals: The gut hormone peptide YY (PYY) secreted from intestinal L-cells has been implicated in the mechanisms of satiation via Y2-receptor (Y2R) signaling in the brain and periphery and is a major candidate for mediating the beneficial effects of bariatric surgery on appetite and body weight. Methods: Here we assessed the role of Y2R signaling in the response to low- and high-fat diets and its role in the effects of Roux-en-Y gastric bypass (RYGB) surgery on body weight, body composition, food intake, energy expenditure and glucose handling, in global Y2R-deficient (Y2RKO) and wildtype (WT) mice made obese on high-fat diet. Results: Both male and female Y2RKO mice responded normally to low- and high-fat diet in terms of body weight, body composition, fasting levels of glucose and insulin, as well as glucose and insulin tolerance for up to 30 weeks of age. Contrary to expectations, obese Y2RKO mice also responded similarly to RYGB compared to WT mice for up to 20 weeks after surgery, with initial hypophagia, sustained body weight loss, and significant improvements in fasting insulin, glucose tolerance, insulin resistance (HOMA-IR), and liver weight compared to sham-operated mice. Furthermore, non-surgical Y2RKO mice weight-matched to RYGB showed the same improvements in glycemic control as Y2RKO mice with RYGB that were similar to WT mice. Conclusions: PYY signaling through Y2R is not required for the normal appetite-suppressing and body weight-lowering effects of RYGB in this global knockout mouse model. Potential compensatory adaptations of PYY signaling through other receptor subtypes or other gut satiety hormones such as glucagon-like peptide-1 (GLP-1) remain to be investigated.


Obesity ◽  
2014 ◽  
Vol 22 (10) ◽  
pp. 2147-2155 ◽  
Author(s):  
Yongbin Yang ◽  
Daniel L. Smith ◽  
Karen D. Keating ◽  
David B. Allison ◽  
Tim R. Nagy

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1126-1126
Author(s):  
Weimin Guo ◽  
Dayong Wu ◽  
Lijun Li ◽  
Edwin Ortega ◽  
Yankun Liu ◽  
...  

Abstract Objectives Obesity is associated with impaired immune function. However, impact of obesity on blood T cell profile is not well studied. The objectives of this study were to investigate the effects of high fat diet (HFD)-induced obesity and long-term fruits and vegetable (FV) consumption on body composition and blood T cell profile. Methods This is partial report from an ongoing study. A total of 240 male C57BL/6J mice were randomly assigned to 4 groups: low fat control (LF-C) or high-fat control (HF-C) diet alone, or together with 15% of a unique mixture of FV (w/w, equivalent to 7–9 servings F&V/d for human) (LF-FV or HF-FV). The feeding will continue until 50% mortality is reached in one group. Body weight, body composition (using MRI), and blood T cell profile (using FACS) are monitored longitudinally at different time points. The results reported here are those assessed when mice were 7 months old. Results After 7 months of feeding, mice fed HF-C gained more weight compared to those fed LF-C. Mice fed HF-FV or LF-FV diets had significantly reduced weight gain and fat mass, and higher muscle mass compared to those fed HF-C or LF-C diet, respectively. Mice fed HF-C also had significantly lower percentage of blood CD3+, CD4+, and CD8 + T cells compared with the LF-C. FV supplementation prevented HFD-induced decrease in percentage of CD3+ and CD4+ cells. Furthermore, both % CD3+ and CD4+ cells were negatively correlated with body weight (P < 0.001) or percentage of fat mass (P < 0.001), and positively associated with percentage of lean mass (P < 0.001). Conclusions Our results suggest that consuming large amounts of a unique mixture of F&V curbs HFD-induced body weight gain, reduces fat mass, and favorably affects blood T cell population. Ongoing studies will assess these analytes when mice are 16 months old, and again when one group reaches 50% mortality, and determine their correlations with functional measures of T cell response, host resistance to infection, health span, and mortality. Funding Sources This study was supported by the U.S. Department of Agriculture – Agricultural Research Service (ARS), under Agreement No. 58–1950-4–004.


2011 ◽  
Vol 301 (5) ◽  
pp. E825-E835 ◽  
Author(s):  
Lucy S. Jun ◽  
C. Parker Siddall ◽  
Evan D. Rosen

Adipose tissue controls energy homeostasis and systemic insulin sensitivity through the elaboration of a series of cytokines and hormones, collectively termed “adipokines.” We and others have identified Lcn2 as a novel adipokine, but its exact role in obesity-induced insulin resistance remains controversial. The aim of this study was to examine the metabolic phenotype of Lcn2−/− mice to clarify the role of Lcn2 in metabolism. Male and female Lcn2−/− and wild-type (WT) littermates were placed on either chow or high-fat diet (HFD) to characterize their metabolic phenotype. Studies included body weight and body composition, glucose and insulin tolerance tests, and adipokine expression studies in serum and in white adipose tissue (WAT). Neither chow nor HFD cohorts showed any differences in body weight or body composition. Chow-fed Lcn2−/− mice did not exhibit any difference in glucose homeostasis compared with WT mice. Fasting serum glucose levels were lower in the chow-fed Lcn2−/− mice, but this finding was not seen in the HFD cohort. Serum adiponectin, leptin, resistin, and RBP4 levels were not different between WT and Lcn2−/− on chow diet. HFD-fed male Lcn2−/− mice did display a small improvement in glucose tolerance, but no difference in insulin sensitivity was seen in either male or female Lcn2−/− mice on HFD. We conclude that the global ablation of Lcn2 has a minimal effect on obesity-associated glucose intolerance but does not appear to affect either age- or obesity-mediated insulin resistance in vivo.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 110
Author(s):  
Thorhildur Ditta Valsdottir ◽  
Bente Øvrebø ◽  
Thea Martine Falck ◽  
Sigbjørn Litleskare ◽  
Egil Ivar Johansen ◽  
...  

We assessed the effect of weight-loss induced with a low-carbohydrate-high-fat diet with and without exercise, on body-composition, cardiorespiratory fitness and cardiovascular risk factors. A total of 57 overweight and obese women (age 40 ± 3.5 years, body mass index 31.1 ± 2.6 kg∙m−2) completed a 10-week intervention using a low-carbohydrate-high-fat diet, with or without interval exercise. An equal deficit of 700 kcal∙day−1 was prescribed, restricting diet only, or moderately restricting diet and adding exercise, producing four groups; normal diet (NORM); low-carbohydrate-high-fat diet (LCHF); normal diet and exercise (NORM-EX); and low-carbohydrate-high-fat diet and exercise (LCHF-EX). Linear Mixed Models were used to assess between-group differences. The intervention resulted in an average 6.7 ± 2.5% weight-loss (p < 0.001). Post-intervention % fat was lower in NORM-EX than NORM (40.0 ± 4.2 vs. 43.5 ± 3.5%, p = 0.024). NORM-EX reached lower values in total cholesterol than NORM (3.9 ± 0.6 vs. 4.7 ± 0.7 mmol/L, p = 0.003), and LCHF-EX (3.9 ± 0.6 vs. 4.9 ± 1.1 mmol/L, p = 0.004). Post intervention triglycerides levels were lower in NORM-EX than NORM (0.87 ± 0.21 vs. 1.11 ± 0.34 mmol/L, p = 0.030). The low-carbohydrate-high-fat diet had no superior effect on body composition, V˙O2peak or cardiovascular risk factors compared to a normal diet, with or without exercise. In conclusion, the intervention decreased fat mass, but exercise improved body composition and caused the most favorable changes in total cholesterol and triglycerides in the NORM-EX. Exercise increased cardiorespiratory fitness, regardless of diet.


2012 ◽  
Vol 106 (2) ◽  
pp. 185-192 ◽  
Author(s):  
Samantha J. Caton ◽  
Maximilian Bielohuby ◽  
Yinglong Bai ◽  
Lothar J. Spangler ◽  
Lukas Burget ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document