Benchmarking state-of-the-art classification algorithms for credit scoring

2003 ◽  
Vol 54 (6) ◽  
pp. 627-635 ◽  
Author(s):  
B Baesens ◽  
T Van Gestel ◽  
S Viaene ◽  
M Stepanova ◽  
J Suykens ◽  
...  
2011 ◽  
Vol 21 (04) ◽  
pp. 311-317 ◽  
Author(s):  
ALEXIS MARCANO-CEDEÑO ◽  
A. MARIN-DE-LA-BARCENA ◽  
J. JIMENEZ-TRILLO ◽  
J. A. PIÑUELA ◽  
D. ANDINA

The assessment of the risk of default on credit is important for financial institutions. Different Artificial Neural Networks (ANN) have been suggested to tackle the credit scoring problem, however, the obtained error rates are often high. In the search for the best ANN algorithm for credit scoring, this paper contributes with the application of an ANN Training Algorithm inspired by the neurons' biological property of metaplasticity. This algorithm is especially efficient when few patterns of a class are available, or when information inherent to low probability events is crucial for a successful application, as weight updating is overemphasized in the less frequent activations than in the more frequent ones. Two well-known and readily available such as: Australia and German data sets has been used to test the algorithm. The results obtained by AMMLP shown have been superior to state-of-the-art classification algorithms in credit scoring.


2015 ◽  
Vol 247 (1) ◽  
pp. 124-136 ◽  
Author(s):  
Stefan Lessmann ◽  
Bart Baesens ◽  
Hsin-Vonn Seow ◽  
Lyn C. Thomas

2017 ◽  
Vol 9 (3) ◽  
pp. 58-72 ◽  
Author(s):  
Guangyu Wang ◽  
Xiaotian Wu ◽  
WeiQi Yan

The security issue of currency has attracted awareness from the public. De-spite the development of applying various anti-counterfeit methods on currency notes, cheaters are able to produce illegal copies and circulate them in market without being detected. By reviewing related work in currency security, the focus of this paper is on conducting a comparative study of feature extraction and classification algorithms of currency notes authentication. We extract various computational features from the dataset consisting of US dollar (USD), Chinese Yuan (CNY) and New Zealand Dollar (NZD) and apply the classification algorithms to currency identification. Our contributions are to find and implement various algorithms from the existing literatures and choose the best approaches for use.


2018 ◽  
pp. 252-269
Author(s):  
Guangyu Wang ◽  
Xiaotian Wu ◽  
WeiQi Yan

The security issue of currency has attracted awareness from the public. De-spite the development of applying various anti-counterfeit methods on currency notes, cheaters are able to produce illegal copies and circulate them in market without being detected. By reviewing related work in currency security, the focus of this paper is on conducting a comparative study of feature extraction and classification algorithms of currency notes authentication. We extract various computational features from the dataset consisting of US dollar (USD), Chinese Yuan (CNY) and New Zealand Dollar (NZD) and apply the classification algorithms to currency identification. Our contributions are to find and implement various algorithms from the existing literatures and choose the best approaches for use.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Bingfei Ren ◽  
Chuanchang Liu ◽  
Bo Cheng ◽  
Jie Guo ◽  
Junliang Chen

Android platform is increasingly targeted by attackers due to its popularity and openness. Traditional defenses to malware are largely reliant on expert analysis to design the discriminative features manually, which are easy to bypass with the use of sophisticated detection avoidance techniques. Therefore, more effective and easy-to-use approaches for detection of Android malware are in demand. In this paper, we present MobiSentry, a novel lightweight defense system for malware classification and categorization on smartphones. Besides conventional static features such as permissions and API calls, MobiSentry also employs the N-gram features of operation codes (n-opcode). We present two comprehensive performance comparisons among several state-of-the-art classification algorithms with multiple evaluation metrics: (1) malware detection on 184,486 benign applications and 21,306 malware samples, and (2) malware categorization on DREBIN, the largest labeled Android malware datasets. We utilize the ensemble of these supervised classifiers to design MobiSentry, which outperforms several related approaches and gives a satisfying performance in the evaluation. Furthermore, we integrate MobiSentry with Android OS that enables smartphones with Android to extract features and to predict whether the application is benign or malicious. Experimental results on real smartphones show that users can easily and effectively protect their devices against malware through this system with a small run-time overhead.


2020 ◽  
Vol 32 (4) ◽  
pp. 759-793 ◽  
Author(s):  
Hoai An Le Thi ◽  
Vinh Thanh Ho

We investigate an approach based on DC (Difference of Convex functions) programming and DCA (DC Algorithm) for online learning techniques. The prediction problem of an online learner can be formulated as a DC program for which online DCA is applied. We propose the two so-called complete/approximate versions of online DCA scheme and prove their logarithmic/sublinear regrets. Six online DCA-based algorithms are developed for online binary linear classification. Numerical experiments on a variety of benchmark classification data sets show the efficiency of our proposed algorithms in comparison with the state-of-the-art online classification algorithms.


2021 ◽  
Vol 11 (6) ◽  
pp. 7824-7835
Author(s):  
H. Alalawi ◽  
M. Alsuwat ◽  
H. Alhakami

The importance of classification algorithms has increased in recent years. Classification is a branch of supervised learning with the goal of predicting class labels categorical of new cases. Additionally, with Coronavirus (COVID-19) propagation since 2019, the world still faces a great challenge in defeating COVID-19 even with modern methods and technologies. This paper gives an overview of classification algorithms to provide the readers with an understanding of the concept of the state-of-the-art classification algorithms and their applications used in the COVID-19 diagnosis and detection. It also describes some of the research published on classification algorithms, the existing gaps in the research, and future research directions. This article encourages both academics and machine learning learners to further strengthen the basis of classification methods.


Author(s):  
Ding Li ◽  
Scott Dick

AbstractGraph-based algorithms are known to be effective approaches to semi-supervised learning. However, there has been relatively little work on extending these algorithms to the multi-label classification case. We derive an extension of the Manifold Regularization algorithm to multi-label classification, which is significantly simpler than the general Vector Manifold Regularization approach. We then augment our algorithm with a weighting strategy to allow differential influence on a model between instances having ground-truth vs. induced labels. Experiments on four benchmark multi-label data sets show that the resulting algorithm performs better overall compared to the existing semi-supervised multi-label classification algorithms at various levels of label sparsity. Comparisons with state-of-the-art supervised multi-label approaches (which of course are fully labeled) also show that our algorithm outperforms all of them even with a substantial number of unlabeled examples.


2017 ◽  
Vol 82 ◽  
pp. 128-150 ◽  
Author(s):  
Chongsheng Zhang ◽  
Changchang Liu ◽  
Xiangliang Zhang ◽  
George Almpanidis

2008 ◽  
Vol 23 (1) ◽  
pp. 18-30 ◽  
Author(s):  
Adrien Depeursinge ◽  
Jimison Iavindrasana ◽  
Asmâa Hidki ◽  
Gilles Cohen ◽  
Antoine Geissbuhler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document