scholarly journals Semi-supervised multi-label classification using an extended graph-based manifold regularization

Author(s):  
Ding Li ◽  
Scott Dick

AbstractGraph-based algorithms are known to be effective approaches to semi-supervised learning. However, there has been relatively little work on extending these algorithms to the multi-label classification case. We derive an extension of the Manifold Regularization algorithm to multi-label classification, which is significantly simpler than the general Vector Manifold Regularization approach. We then augment our algorithm with a weighting strategy to allow differential influence on a model between instances having ground-truth vs. induced labels. Experiments on four benchmark multi-label data sets show that the resulting algorithm performs better overall compared to the existing semi-supervised multi-label classification algorithms at various levels of label sparsity. Comparisons with state-of-the-art supervised multi-label approaches (which of course are fully labeled) also show that our algorithm outperforms all of them even with a substantial number of unlabeled examples.

2021 ◽  
Vol 7 (2) ◽  
pp. 21
Author(s):  
Roland Perko ◽  
Manfred Klopschitz ◽  
Alexander Almer ◽  
Peter M. Roth

Many scientific studies deal with person counting and density estimation from single images. Recently, convolutional neural networks (CNNs) have been applied for these tasks. Even though often better results are reported, it is often not clear where the improvements are resulting from, and if the proposed approaches would generalize. Thus, the main goal of this paper was to identify the critical aspects of these tasks and to show how these limit state-of-the-art approaches. Based on these findings, we show how to mitigate these limitations. To this end, we implemented a CNN-based baseline approach, which we extended to deal with identified problems. These include the discovery of bias in the reference data sets, ambiguity in ground truth generation, and mismatching of evaluation metrics w.r.t. the training loss function. The experimental results show that our modifications allow for significantly outperforming the baseline in terms of the accuracy of person counts and density estimation. In this way, we get a deeper understanding of CNN-based person density estimation beyond the network architecture. Furthermore, our insights would allow to advance the field of person density estimation in general by highlighting current limitations in the evaluation protocols.


2020 ◽  
Vol 32 (4) ◽  
pp. 759-793 ◽  
Author(s):  
Hoai An Le Thi ◽  
Vinh Thanh Ho

We investigate an approach based on DC (Difference of Convex functions) programming and DCA (DC Algorithm) for online learning techniques. The prediction problem of an online learner can be formulated as a DC program for which online DCA is applied. We propose the two so-called complete/approximate versions of online DCA scheme and prove their logarithmic/sublinear regrets. Six online DCA-based algorithms are developed for online binary linear classification. Numerical experiments on a variety of benchmark classification data sets show the efficiency of our proposed algorithms in comparison with the state-of-the-art online classification algorithms.


Author(s):  
Anjali Sifar ◽  
Nisheeth Srivastava

Supervised learning operates on the premise that labels unambiguously represent ground truth. This premise is reasonable in domains wherein a high degree of consensus is easily possible for any given data record, e.g. in agreeing on whether an image contains an elephant or not. However, there are several domains wherein people disagree with each other on the appropriate label to assign to a record, e.g. whether a tweet is toxic. We argue that data labeling must be understood as a process with some degree of domain-dependent noise and that any claims of predictive prowess must be sensitive to the degree of this noise. We present a method for quantifying labeling noise in a particular domain wherein people are seen to disagree with their own past selves on the appropriate label to assign to a record: choices under prospect uncertainty. Our results indicate that `state-of-the-art' choice models of decisions from description, by failing to consider the intrinsic variability of human choice behavior, find themselves in the odd position of predicting humans' choices better than the same humans' own previous choices for the same problem. We conclude with observations on how the predicament we empirically demonstrate in our work could be handled in the practice of supervised learning.


2020 ◽  
Vol 34 (04) ◽  
pp. 4691-4698
Author(s):  
Shu Li ◽  
Wen-Tao Li ◽  
Wei Wang

In many real-world applications, the data have several disjoint sets of features and each set is called as a view. Researchers have developed many multi-view learning methods in the past decade. In this paper, we bring Graph Convolutional Network (GCN) into multi-view learning and propose a novel multi-view semi-supervised learning method Co-GCN by adaptively exploiting the graph information from the multiple views with combined Laplacians. Experimental results on real-world data sets verify that Co-GCN can achieve better performance compared with state-of-the-art multi-view semi-supervised methods.


2011 ◽  
Vol 21 (04) ◽  
pp. 311-317 ◽  
Author(s):  
ALEXIS MARCANO-CEDEÑO ◽  
A. MARIN-DE-LA-BARCENA ◽  
J. JIMENEZ-TRILLO ◽  
J. A. PIÑUELA ◽  
D. ANDINA

The assessment of the risk of default on credit is important for financial institutions. Different Artificial Neural Networks (ANN) have been suggested to tackle the credit scoring problem, however, the obtained error rates are often high. In the search for the best ANN algorithm for credit scoring, this paper contributes with the application of an ANN Training Algorithm inspired by the neurons' biological property of metaplasticity. This algorithm is especially efficient when few patterns of a class are available, or when information inherent to low probability events is crucial for a successful application, as weight updating is overemphasized in the less frequent activations than in the more frequent ones. Two well-known and readily available such as: Australia and German data sets has been used to test the algorithm. The results obtained by AMMLP shown have been superior to state-of-the-art classification algorithms in credit scoring.


Author(s):  
Jian Li ◽  
Yong Liu ◽  
Rong Yin ◽  
Weiping Wang

Graph-based semi-supervised learning is one of the most popular and successful semi-supervised learning approaches. Unfortunately, it suffers from high time and space complexity, at least quadratic with the number of training samples. In this paper, we propose an efficient graph-based semi-supervised algorithm with a sound theoretical guarantee. The proposed method combines Nystrom subsampling and preconditioned conjugate gradient descent, substantially improving computational efficiency and reducing memory requirements. Extensive empirical results reveal that our method achieves the state-of-the-art performance in a short time even with limited computing resources.


2012 ◽  
Vol 9 (4) ◽  
pp. 1513-1532 ◽  
Author(s):  
Xue Zhang ◽  
Wangxin Xiao

In order to address the insufficient training data problem, many active semi-supervised algorithms have been proposed. The self-labeled training data in semi-supervised learning may contain much noise due to the insufficient training data. Such noise may snowball themselves in the following learning process and thus hurt the generalization ability of the final hypothesis. Extremely few labeled training data in sparsely labeled text classification aggravate such situation. If such noise could be identified and removed by some strategy, the performance of the active semi-supervised algorithms should be improved. However, such useful techniques of identifying and removing noise have been seldom explored in existing active semi-supervised algorithms. In this paper, we propose an active semi-supervised framework with data editing (we call it ASSDE) to improve sparsely labeled text classification. A data editing technique is used to identify and remove noise introduced by semi-supervised labeling. We carry out the data editing technique by fully utilizing the advantage of active learning, which is novel according to our knowledge. The fusion of active learning with data editing makes ASSDE more robust to the sparsity and the distribution bias of the training data. It further simplifies the design of semi-supervised learning which makes ASSDE more efficient. Extensive experimental study on several real-world text data sets shows the encouraging results of the proposed framework for sparsely labeled text classification, compared with several state-of-the-art methods.


2019 ◽  
Vol 32 (14) ◽  
pp. 10705-10717 ◽  
Author(s):  
Joost van der Putten ◽  
Fons van der Sommen ◽  
Jeroen de Groof ◽  
Maarten Struyvenberg ◽  
Svitlana Zinger ◽  
...  

AbstractIn medical imaging, a proper gold-standard ground truth as, e.g., annotated segmentations by assessors or experts is lacking or only scarcely available and suffers from large intervariability in those segmentations. Most state-of-the-art segmentation models do not take inter-observer variability into account and are fully deterministic in nature. In this work, we propose hypersphere encoder–decoder networks in combination with dynamic leaky ReLUs, as a new method to explicitly incorporate inter-observer variability into a segmentation model. With this model, we can then generate multiple proposals based on the inter-observer agreement. As a result, the output segmentations of the proposed model can be tuned to typical margins inherent to the ambiguity in the data. For experimental validation, we provide a proof of concept on a toy data set as well as show improved segmentation results on two medical data sets. The proposed method has several advantages over current state-of-the-art segmentation models such as interpretability in the uncertainty of segmentation borders. Experiments with a medical localization problem show that it offers improved biopsy localizations, which are on average 12% closer to the optimal biopsy location.


Author(s):  
K Sobha Rani

Collaborative filtering suffers from the problems of data sparsity and cold start, which dramatically degrade recommendation performance. To help resolve these issues, we propose TrustSVD, a trust-based matrix factorization technique. By analyzing the social trust data from four real-world data sets, we conclude that not only the explicit but also the implicit influence of both ratings and trust should be taken into consideration in a recommendation model. Hence, we build on top of a state-of-the-art recommendation algorithm SVD++ which inherently involves the explicit and implicit influence of rated items, by further incorporating both the explicit and implicit influence of trusted users on the prediction of items for an active user. To our knowledge, the work reported is the first to extend SVD++ with social trust information. Experimental results on the four data sets demonstrate that our approach TrustSVD achieves better accuracy than other ten counterparts, and can better handle the concerned issues.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
João Lobo ◽  
Rui Henriques ◽  
Sara C. Madeira

Abstract Background Three-way data started to gain popularity due to their increasing capacity to describe inherently multivariate and temporal events, such as biological responses, social interactions along time, urban dynamics, or complex geophysical phenomena. Triclustering, subspace clustering of three-way data, enables the discovery of patterns corresponding to data subspaces (triclusters) with values correlated across the three dimensions (observations $$\times$$ × features $$\times$$ × contexts). With increasing number of algorithms being proposed, effectively comparing them with state-of-the-art algorithms is paramount. These comparisons are usually performed using real data, without a known ground-truth, thus limiting the assessments. In this context, we propose a synthetic data generator, G-Tric, allowing the creation of synthetic datasets with configurable properties and the possibility to plant triclusters. The generator is prepared to create datasets resembling real 3-way data from biomedical and social data domains, with the additional advantage of further providing the ground truth (triclustering solution) as output. Results G-Tric can replicate real-world datasets and create new ones that match researchers needs across several properties, including data type (numeric or symbolic), dimensions, and background distribution. Users can tune the patterns and structure that characterize the planted triclusters (subspaces) and how they interact (overlapping). Data quality can also be controlled, by defining the amount of missing, noise or errors. Furthermore, a benchmark of datasets resembling real data is made available, together with the corresponding triclustering solutions (planted triclusters) and generating parameters. Conclusions Triclustering evaluation using G-Tric provides the possibility to combine both intrinsic and extrinsic metrics to compare solutions that produce more reliable analyses. A set of predefined datasets, mimicking widely used three-way data and exploring crucial properties was generated and made available, highlighting G-Tric’s potential to advance triclustering state-of-the-art by easing the process of evaluating the quality of new triclustering approaches.


Sign in / Sign up

Export Citation Format

Share Document