The W1 Issue. II: UT Reliability for Inspection of T-Joints with Backing

2000 ◽  
Vol 126 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Terrence F. Paret
Keyword(s):  
2014 ◽  
Vol 57 ◽  
pp. 146-155 ◽  
Author(s):  
Yong Zhao ◽  
Lilong Zhou ◽  
Qingzhao Wang ◽  
Keng Yan ◽  
Jiasheng Zou

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 546
Author(s):  
Krzysztof L. Molski ◽  
Piotr Tarasiuk

The paper deals with the problem of stress concentration at the weld toe of a plate T-joint subjected to axial, bending, and shearing loading modes. Theoretical stress concentration factors were obtained from numerical simulations using the finite element method for several thousand geometrical cases, where five of the most important geometrical parameters of the joint were considered to be independent variables. For each loading mode—axial, bending, and shearing—highly accurate closed form parametric expression has been derived with a maximum percentage error lower than 2% with respect to the numerical values. Validity of each approximating formula covers the range of dimensional proportions of welded plate T-joints used in engineering applications. Two limiting cases are also included in the solutions—when the weld toe radius tends to zero and the main plate thickness becomes infinite.


2020 ◽  
pp. 107012
Author(s):  
Vladimir Vavilov ◽  
Arsenii Chulkov ◽  
Stanislav Dubinskii ◽  
Douglas Burleigh ◽  
Victor Shpilnoi ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1938
Author(s):  
Haifeng Yang ◽  
Hongyun Zhao ◽  
Xinxin Xu ◽  
Li Zhou ◽  
Huihui Zhao ◽  
...  

In this study, 2A14-T4 Al-alloy T-joints were prepared via stationary shoulder friction stir welding (SSFSW) technology where the stirring pin’s rotation speed was set as different values. In combination with the numerical simulation results, the macro-forming, microstructure, and mechanical properties of the joints under different welding conditions were analyzed. The results show that the thermal cycle curves in the SSFSW process are featured by a steep climb and slow decreasing variation trends. As the stirring pin’s rotation speed increased, the grooves on the weld surface became more obvious. The base and rib plates exhibit W- or N-shaped hardness distribution patterns. The hardness of the weld nugget zone (WNZ) was high but was lower than that of the base material. The second weld’s annealing effect contributed to the precipitation and coarsening of the precipitated phase in the first weld nugget zone (WNZ1). The hardness of the heat affect zone (HAZ) in the vicinity of the thermo-mechanically affected zone (TMAZ) dropped to the minimum. As the stirring pin's rotation speed increased, the tensile strengths of the base and rib plates first increased and then dropped. The base and rib plates exhibited ductile and brittle/ductile fracture patterns, respectively.


2017 ◽  
Vol 128 ◽  
pp. 555-566 ◽  
Author(s):  
Mina S. Iskander ◽  
Amr A. Shaat ◽  
Ezzeldin Y. Sayed-Ahmed ◽  
Emam A. Soliman
Keyword(s):  

2007 ◽  
Vol 344 ◽  
pp. 751-758 ◽  
Author(s):  
Livan Fratini ◽  
Fabrizio Micari ◽  
Antonio Squillace ◽  
G. Giorleo

Welding is playing a growing role in transport industry due to relevant advantages it allows. Friction Stir Welding is considered one of the most promising joining technologies, especially when it is applied to light alloys. Focusing attention on FSW of T-joints, several parameters have to be considered, and due to thermo-mechanical features of process, T joints need a dedicated approach. A set of previously developed experiments has shown that the tilt angle plays a relevant role in the joint strength. Furthermore it should be observed that T-joints are very often utilized in aerospace industries since the produced structures are composed of joined skins and stingers. Numerous data are reported in literature about FSW of butt joints, very few data, to authors’ knowledge, exists on T joints. In this paper a micro structural and mechanical analysis has been developed on FSW T-joints of AA 6082 T6 rolled plates, realized setting welding direction both parallel and perpendicular to rolling direction. The obtained results can be considered as a further acquired knowledge in the comprehension and the design of FSW processes.


Sign in / Sign up

Export Citation Format

Share Document