Damage Evaluation with P-Wave Velocity Measurements during Uniaxial Compression Tests on Argillaceous Rocks

2007 ◽  
Vol 7 (6) ◽  
pp. 431-436 ◽  
Author(s):  
Frederic L. Pellet ◽  
Geraldine Fabre
2011 ◽  
Vol 185 (3) ◽  
pp. 1312-1320 ◽  
Author(s):  
Klaus Ullemeyer ◽  
Dmitry I. Nikolayev ◽  
Nikolas I. Christensen ◽  
Jan H. Behrmann

2021 ◽  
Vol 74 (4) ◽  
pp. 521-528
Author(s):  
André Cezar Zingano ◽  
Paulo Salvadoretti ◽  
Rafael Ubirajara Rocha ◽  
João Felipe Coimbra Leite Costa

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Yunjiang Sun ◽  
Jianping Zuo ◽  
Yue Shi ◽  
Zhengdai Li ◽  
Changning Mi ◽  
...  

Ultrasonic wave velocity is effective to evaluate anisotropy property and predict rock failure. This paper investigates the correlation between dynamic ultrasonic and mechanical properties of sandstones with different buried depths subjected to uniaxial compression tests. The circumferential anisotropy and axial wave velocity of sandstone are obtained by means of ultrasonic wave velocity measurements. The mechanical properties, including Young’s modulus and uniaxial compressive strength, are positively correlated with the axial P wave velocity. The average angles between the sandstone failure plane and the minimum and maximum wave directions are 35.8° and 63.3°, respectively. The axial P wave velocity almost keeps constant, and the axial S wave velocity has a decreasing trend before the failure of rock specimen. In most rock samples under uniaxial compression, shear failure occurs in the middle and splitting appears near both sides. Additionally, the dynamic Young’s modulus and dynamic Poisson’s ratio during loading are obtained, and the negative values of the Poisson’s ratio occur at the initial compression stage. Distortion and rotation of micro/mesorock structures may be responsible for the negative Poisson’s ratio.


2013 ◽  
Vol 04 (09) ◽  
pp. 1292-1299 ◽  
Author(s):  
Abdelaali Rahmouni ◽  
Abderrahim Boulanouar ◽  
Mohamed Boukalouch ◽  
Yves Géraud ◽  
Abderrahim Samaouali ◽  
...  

2005 ◽  
Vol 28 (6) ◽  
pp. 12293 ◽  
Author(s):  
L David Suits ◽  
TC Sheahan ◽  
D Fratta ◽  
KA Alshibli ◽  
WM Tanner ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 3311
Author(s):  
Vladimir Frid ◽  
Stelios M. Potirakis ◽  
Semen Shulov

The aim of this work was to investigate a wide range of grain sizes of sand in the pre-yield regime during compression through the combined study of ultrasound (US) wave speed and acoustic emission (AE). The specific study was performed using modified oedometer and uniaxial compression experimental set-ups. The studied samples were natural dune sand (poorly graded on the poorly graded sand (SP) index) as well as its three extracted fractions as follows: 2.36–0.6 mm, 0.6–0.3 mm and 0.3–0.075 mm. The maximum compression stress during the modified oedometer experiments was <150 kPa, while during the modified uniaxial compression experiments, it was <400 kPa. Each sample was loaded while measuring the US pressure (P) wave speed and AE at each loading stage. The results show that the stiffer the soil is, the higher the value of the P wave speed measured, resulting in similar P wave velocity values achieved at a much lower applied stress during the oedometer experiments in comparison with the uniaxial compression tests. Regarding the AE results, it is seen that the higher the stress level is, causing more friction between the sand particles, the more AE events there are during their movement. The following parameters of AE were shown to be the most sensitive to the stress increase: the number of AE hits and the signals’ energy.


Sign in / Sign up

Export Citation Format

Share Document