scholarly journals Experimental Investigation on the Correlation between Dynamic Ultrasonic and Mechanical Properties of Sandstone Subjected to Uniaxial Compression

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Yunjiang Sun ◽  
Jianping Zuo ◽  
Yue Shi ◽  
Zhengdai Li ◽  
Changning Mi ◽  
...  

Ultrasonic wave velocity is effective to evaluate anisotropy property and predict rock failure. This paper investigates the correlation between dynamic ultrasonic and mechanical properties of sandstones with different buried depths subjected to uniaxial compression tests. The circumferential anisotropy and axial wave velocity of sandstone are obtained by means of ultrasonic wave velocity measurements. The mechanical properties, including Young’s modulus and uniaxial compressive strength, are positively correlated with the axial P wave velocity. The average angles between the sandstone failure plane and the minimum and maximum wave directions are 35.8° and 63.3°, respectively. The axial P wave velocity almost keeps constant, and the axial S wave velocity has a decreasing trend before the failure of rock specimen. In most rock samples under uniaxial compression, shear failure occurs in the middle and splitting appears near both sides. Additionally, the dynamic Young’s modulus and dynamic Poisson’s ratio during loading are obtained, and the negative values of the Poisson’s ratio occur at the initial compression stage. Distortion and rotation of micro/mesorock structures may be responsible for the negative Poisson’s ratio.

Geophysics ◽  
1995 ◽  
Vol 60 (3) ◽  
pp. 651-659 ◽  
Author(s):  
Mark E. Mathisen ◽  
Paul Cunningham ◽  
Jesse Shaw ◽  
Anthony A. Vasiliou ◽  
J. H. Justice ◽  
...  

S‐wave, P‐wave, and Poisson’s ratio tomograms have been used to interpret the 3-D distribution of rock and fluid properties during an early phase of a California heavy oil sand steamflood. Four lines of good quality crosswell seismic data, with source to receiver offsets ranging from 287 to 551 ft (87 to 168 m), were acquired in a radial pattern around a high temperature cemented receiver cable in four days. Processing, first‐arrival picking, and good quality tomographic reconstructions were completed despite offset‐related variations in data quality between the long and short lines. Interpretation was based on correlations with reservoir models, log, core, temperature, and steam injection data. S‐wave tomograms define the 3-D distribution of the “high flow” turbidite channel facies, the “moderate‐low flow” levee facies, porosity, and structural dip. The S‐wave tomograms also define an area with anomalously low S‐wave velocity, which correlates with low shear log velocities and suggests that pressure‐related dilation and compaction may be imageable. P‐wave tomograms define the same reservoir lithology and structure as the S‐wave tomograms and the 3-D distribution of low compressional velocity zones formed by previous steam‐heat injection and the formation of gas. The low P‐wave velocity zones, which are laterally continuous in the “high flow” channel facies near the top of most zones, indicate that the steam‐heat‐gas distribution is controlled by stratification. The stratigraphic control of gas‐bearing zones inferred from P‐wave tomograms is confirmed by Poisson’s ratio tomograms which display low Poisson’s ratios indicative of gas (<0.35) in the same zones as the low P‐wave velocities. The interpretation results indicate that radial survey tomograms can be tied at a central well and used to develop an integrated 3-D geoscience‐engineering reservoir model despite offset‐related variations in data quality. The laterally continuous, stratification‐controlled, low P‐wave velocity zones, which extend up‐dip, suggest that significant amounts of steam‐heat are not heating the surrounding reservoir volume but are flowing updip along “high flow” channels.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Qi-Le Ding ◽  
Shuai-Bing Song

To obtain an improved and more accurate understanding of the relationship between the P-wave velocity and the mechanical properties of damaged sandstone, uniaxial compression tests were performed on sandstone subjected to different high-temperature treatments or freeze-thaw (F-T) cycles. After high-temperature treatment, the tests showed a generally positive relationship between the P-wave velocity and mechanical characteristics, although there were many exceptions. The mechanical properties showed significant differences for a given P-wave velocity. Based on the mechanical tests after the F-T cycles, the mechanical properties and P-wave velocities exhibited different trends. The UCS and Young’s modulus values slightly decreased after 30, 40, and 50 cycles, whereas both an increase and a decrease occurred in the P-wave velocity. The UCS, Young’s modulus, and P-wave velocity represent different macrobehaviors of rock properties. A statistical relationship exists between the P-wave velocity and mechanical properties, such as the UCS and Young’s modulus, but no mechanical relationship exists. Further attention should be given to using the P-wave velocity to estimate and predict the mechanical properties of rock.


1991 ◽  
Vol 28 (3) ◽  
pp. 342-354 ◽  
Author(s):  
A. V. Boland ◽  
R. M. Ellis

The Kapuskasing uplift is an oblique cross section of Archean crust exposed by a major thrusting event in Early Proterozoic times. Previous results from the traveltime and amplitude analysis of compressional-wave (P-wave) arrivals from a seismic-refraction experiment have been used to constrain the modelling of shear-wave (S-wave) arrivals and gravity anomalies along the seismic profiles. S-wave and P-wave velocity information have been combined to obtain the variations of Poisson's ratio within the crust. High and low Poisson's ratio values have been linked to the mafic and felsic content, respectively, of the Shield rocks. Density variations along the profiles, constrained by the P-wave velocity structures and the observed gravity anomalies, again have been linked to the lithological variations as observed in the exposed cross section. Geological models, constrained by the geophysical observations and the cross-sectional exposure, have been constructed for profiles across the northern and southern portions of the main uplift region. The results indicate an increase in pyroxene and garnetiferous gneisses with depth in the crust, as suggested by the high P-wave velocities (7.0–7.6 km/s), high densities (3050–3150 kg/m3, high Poisson's ratio values (0.26–0.28), and the petrological variations within the exposure. The presence of a low-velocity and low-density layer of tonalites under the surface greenstones has been established and can account for the low-velocity zones imaged along the Abitibi profile of this experiment and those imaged in other Shield refraction experiments.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. U61-U73 ◽  
Author(s):  
Laura Valentina Socco ◽  
Cesare Comina

Surface waves (SWs) in seismic records can be used to extract local dispersion curves (DCs) along a seismic line. These curves can be used to estimate near-surface S-wave velocity models. If the velocity models are used to compute S-wave static corrections, the required information consists of S-wave time-average velocities that define the one-way time for a given datum plan depth. However, given the wider use of P-wave reflection seismic with respect to S-wave surveys, the estimate of P-wave time-average velocity would be more useful. We therefore focus on the possibility of also extracting time-average P-wave velocity models from SW dispersion data. We start from a known 1D S-wave velocity model along the line, with its relevant DC, and we estimate a wavelength/depth relationship for SWs. We found that this relationship is sensitive to Poisson’s ratio, and we develop a simple method for estimating an “apparent” Poisson’s ratio profile, defined as the Poisson’s ratio value that relates the time-average S-wave velocity to the time-average P-wave velocity. Hence, we transform the time-average S-wave velocity models estimated from the DCs into the time-average P-wave velocity models along the seismic line. We tested the method on synthetic and field data and found that it is possible to retrieve time-average P-wave velocity models with uncertainties mostly less than 10% in laterally varying sites and one-way traveltime for P-waves with less than 5 ms uncertainty with respect to P-wave tomography data. To our knowledge, this is the first method for reliable estimation of P-wave velocity from SW data without any a priori information or additional data.


2008 ◽  
Vol 33-37 ◽  
pp. 969-974 ◽  
Author(s):  
Bong Bu Jung ◽  
Seong Hyun Ko ◽  
Hun Kee Lee ◽  
Hyun Chul Park

This paper will discuss two different techniques to measure mechanical properties of thin film, bulge test and nano-indentation test. In the bulge test, uniform pressure applies to one side of thin film. Measurement of the membrane deflection as a function of the applied pressure allows one to determine the mechanical properties such as the elastic modulus and the residual stress. Nano-indentation measurements are accomplished by pushing the indenter tip into a sample and then withdrawing it, recording the force required as a function of position. . In this study, modified King’s model can be used to estimate the mechanical properties of the thin film in order to avoid the effect of substrates. Both techniques can be used to determine Young’s modulus or Poisson’s ratio, but in both cases knowledge of the other variables is needed. However, the mathematical relationship between the modulus and Poisson's ratio is different for the two experimental techniques. Hence, achieving agreement between the techniques means that the modulus and Poisson’s ratio and Young’s modulus of thin films can be determined with no a priori knowledge of either.


Author(s):  
George Lucas Dias ◽  
Ricardo Rodrigues Magalhães ◽  
Danton Diego Ferreira ◽  
Bruno Henrique Groenner Barbosa

The knowledge of materials' mechanical properties in design during product development phases is necessary to identify components and assembly problems. These are problems such as mechanical stresses and deformations which normally cause plastic deformation, early fatigue or even fracture. This article is aimed to use particle swarm optimization (PSO) and finite element inverse analysis to determine Young's Modulus and Poisson's ratio from a cantilever beam, manufactured in ASTM A36 steel, subjected to a load of 19.6 N applied to its free end. The cantilever beam was modeled and simulated using a commercial FEA software. Constriction Factor Method (PSO variation) was used and its parameters were analyzed in order to improve errors. PSO results indicated Young's Modulus and Poisson's ratio errors of around 1.9% and 0.4%, respectively, when compared to the original material properties. Improvement in the data convergence and a reduction in the number of PSO iterations was observed. This shows the potentiality of using PSO along with Finite Element Inverse Analysis for mechanical properties evaluation.


Sign in / Sign up

Export Citation Format

Share Document