scholarly journals Study of Static and Dynamic Properties of Sand under Low Stress Compression

2021 ◽  
Vol 11 (8) ◽  
pp. 3311
Author(s):  
Vladimir Frid ◽  
Stelios M. Potirakis ◽  
Semen Shulov

The aim of this work was to investigate a wide range of grain sizes of sand in the pre-yield regime during compression through the combined study of ultrasound (US) wave speed and acoustic emission (AE). The specific study was performed using modified oedometer and uniaxial compression experimental set-ups. The studied samples were natural dune sand (poorly graded on the poorly graded sand (SP) index) as well as its three extracted fractions as follows: 2.36–0.6 mm, 0.6–0.3 mm and 0.3–0.075 mm. The maximum compression stress during the modified oedometer experiments was <150 kPa, while during the modified uniaxial compression experiments, it was <400 kPa. Each sample was loaded while measuring the US pressure (P) wave speed and AE at each loading stage. The results show that the stiffer the soil is, the higher the value of the P wave speed measured, resulting in similar P wave velocity values achieved at a much lower applied stress during the oedometer experiments in comparison with the uniaxial compression tests. Regarding the AE results, it is seen that the higher the stress level is, causing more friction between the sand particles, the more AE events there are during their movement. The following parameters of AE were shown to be the most sensitive to the stress increase: the number of AE hits and the signals’ energy.

Author(s):  
Mary L. Hughes ◽  
C. Allen Ross ◽  
Voncile L. Ashley

The Air Force has been interested for some time in the development of computer codes that accurately predict the penetrator trajectory created when munitions are fired into concrete and geomaterial targets, as well as the resulting depth of penetration. Recent work has focused on experimental research performed to determine quasistatic, dynamic, unconfined and confined material properties for development of an elastic/viscoplastic constitutive equation. This constitutive equation has shown some promise in predicting stress and strains but lacks a consistent damage parameter to predict damage or fractures exhibited by the target material during experimental impact tests. Current damage level predictors that employ a scalar damage parameter are not sufficient to predict the directional damage or fracture that occurs in simple uniaxial compression tests of concrete and geomaterials. Tensorial or directional damage parameters coupled with constitutive relations are necessary for better understanding and accurate prediction of damage exhibited when munitions impact concrete and geomaterials. The primary objective of the study described herein was to identify, quantify and characterize damage parameters associated with certain constitutive responses of cementitious and geologic materials. To that end, longitudinal wave speed and biaxial strain data were collected simultaneously on a series of grout cubes as they were being loaded to failure in uniaxial compression. The results of these tests, and a comparison to existing related data [1, 2] are presented.


2019 ◽  
Vol 219 (2) ◽  
pp. 1377-1394 ◽  
Author(s):  
S Jennings ◽  
D Hasterok ◽  
J Payne

SUMMARY Thermal conductivity is a physical parameter crucial to accurately estimating temperature and modelling thermally related processes within the lithosphere. Direct measurements are often impractical due to the high cost of comprehensive sampling or inaccessibility and thereby require indirect estimates. In this study, we report 340 new thermal conductivity measurements on igneous rocks spanning a wide range of compositions using an optical thermal conductivity scanning device. These are supplemented by a further 122 measurements from the literature. Using major element geochemistry and modal mineralogy, we produce broadly applicable empirical relationships between composition and thermal conductivity. Predictive models for thermal conductivity are developed using (in order of decreasing accuracy) major oxide composition, CIPW normative mineralogy and estimated modal mineralogy. Four common mixing relationships (arithmetic, geometric, square-root and harmonic) are tested and, while results are similar, the geometric model consistently produces the best fit. For our preferred model, $k_{\text{eff}} = \exp ( 1.72 \, C_{\text{SiO}_2} + 1.018 \, C_{\text{MgO}} - 3.652 \, C_{\text{Na}_2\text{O}} - 1.791 \, C_{\text{K}_2\text{O}})$, we find that SiO2 is the primary control on thermal conductivity with an RMS of 0.28 W m−1 K−1or ∼10 per cent. Estimates from normative mineralogy work to a similar degree but require a greater number of parameters, while forward and inverse modelling using estimated modal mineralogy produces less than satisfactory results owing to a number of complications. Using our model, we relate thermal conductivity to both P-wave velocity and density, revealing systematic trends across the compositional range. We determine that thermal conductivity can be calculated from P-wave velocity in the range 6–8 km s−1 to within 0.31 W m−1 K−1 using $k({V_p}) = 0.5822 \, V_p^2 - 8.263 \, V_p + 31.62$. This empirical model can be used to estimate thermal conductivity within the crust where direct sampling is impractical or simply not possible (e.g. at great depths). Our model represents an improved method for estimating lithospheric conductivity than present formulas which exist only for a limited range of compositions or are limited by infrequently measured parameters.


2014 ◽  
Vol 1049-1050 ◽  
pp. 497-504 ◽  
Author(s):  
Xiao Bin Lu ◽  
Jin Sheng Jia ◽  
Feng Ling Ma ◽  
Wei Feng ◽  
Li Juan Meng

This paper first introduces the basic concept of the CSG (cemented sand and gravel) dam construction. It then puts forward a new quality control method by inspecting the in-situ P-wave speed of CSG as an alternative to the conventional specimen compression tests. Through an extensive experimental program, it is found that there is a good correlation between the compressive strength and P-wave speed of CSG, which makes the P-wave speed measurement potentially an effective and efficient quality control measure to evaluate the CSG strength on site.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Yunjiang Sun ◽  
Jianping Zuo ◽  
Yue Shi ◽  
Zhengdai Li ◽  
Changning Mi ◽  
...  

Ultrasonic wave velocity is effective to evaluate anisotropy property and predict rock failure. This paper investigates the correlation between dynamic ultrasonic and mechanical properties of sandstones with different buried depths subjected to uniaxial compression tests. The circumferential anisotropy and axial wave velocity of sandstone are obtained by means of ultrasonic wave velocity measurements. The mechanical properties, including Young’s modulus and uniaxial compressive strength, are positively correlated with the axial P wave velocity. The average angles between the sandstone failure plane and the minimum and maximum wave directions are 35.8° and 63.3°, respectively. The axial P wave velocity almost keeps constant, and the axial S wave velocity has a decreasing trend before the failure of rock specimen. In most rock samples under uniaxial compression, shear failure occurs in the middle and splitting appears near both sides. Additionally, the dynamic Young’s modulus and dynamic Poisson’s ratio during loading are obtained, and the negative values of the Poisson’s ratio occur at the initial compression stage. Distortion and rotation of micro/mesorock structures may be responsible for the negative Poisson’s ratio.


2020 ◽  
Vol 24 (6 Part B) ◽  
pp. 4001-4009
Author(s):  
Peng Hou ◽  
Lin Gao ◽  
Yan Xing ◽  
Zhao-Peng Zhang

In geothermal energy exploration, the reservoir rock is always subjected to thermal cycles and its physical properties will be seriously affected. In this paper, the changes of the internal structure of the sandstone after the thermal cycle are firstly evaluated by ultrasonic tests. Then, uniaxial compression tests are conducted on the treated specimens. The effects of the thermal cycling on mechanical properties and energy evolution law of the sandstone are analyzed. The results show that the density, P-wave velocity and mechanical properties of the sandstone reduced with the increase in the thermal cycle, especially in the high temperature cycle. The increase of the temperature in the thermal cycle can increase the influence of the thermal cycle on the energy evolution law.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 58
Author(s):  
Yujie Feng ◽  
Haijian Su ◽  
Yinjiang Nie ◽  
Honghui Zhao

Marble is a common rock used in many buildings for structural or ornamental purposes and is widely distributed in underground engineering projects. The rocks are exposed to high temperatures when a tunnel fire occurs, and they will be rapidly cooled during the rescue process, which has a great impact on the rock performance and the underground engineering stability. Therefore, the role of cyclic thermal shocks on the physical and mechanical properties of marble specimens was systematically investigated. Different cyclic thermal shock treatments (T = 25, 200, 400, 600, 800 °C; N = 1, 3, 5, 7, 9) were applied to marble specimens and the changes in mass, volume, density and P-wave velocity were recorded in turn. Then, the thermal conductivity, optical microscopy and uniaxial compression tests were carried out. The results showed that both the cyclic thermal shock numbers (N) and the temperature level (T) weaken the rock properties. When the temperature of a thermal shock exceeds 600 °C, the mass loss coefficient and porosity of the marble will increase significantly. The most noticeable change in P-wave velocity occurs between 200 and 400 °C, with a 52.98% attenuation. After three thermal shocks, the cyclic thermal shock numbers have little influence on the uniaxial compressive strength and Young’s modulus of marble specimens. Shear failure is the principal failure mode in marble specimens that have experienced severe thermal damage (high N or T). The optical microscopic pictures are beneficial for illustrating the thermal cracking mechanism of marble specimens after cyclic thermal shocks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jianguang Li ◽  
Zhuoqun Yu ◽  
Ziyi Zhou ◽  
Yanchun Wang ◽  
Jiwei Li

AbstractComposite rocks are easily encountered in a wide range of geotechnical construction projects. Understanding their mechanical properties and failure modes is very important to ensure project quality and safety. This study conducted a mechanical analysis to assess the stress distribution in composite rock with a horizontal interlayer and predicted the possible failure modes. Uniaxial compression tests were carried out on the composite rock samples to reveal their mechanical properties. It was concluded that a composite rock with a thick interlayer failed more easily than a composite rock with a thin interlayer. Four potential failure modes were related to the internal stress distribution under compression and the differences in deformation capacity and strength among the constituent components. The stress distribution derived from the mechanical analysis could explain the failure mechanism very well. These results verified the validity of the mechanical analysis results and improved understanding of the mechanical properties of composite rock with a horizontal interlayer.


2021 ◽  
Author(s):  
Hassan Moomivand ◽  
Hussamuddin Moomivand ◽  
Rain Nikrouz ◽  
Rashid Azad

Abstract Wave velocity as a simple nondestructive method is used for various applications in geotechnical engineering. Several physical parameters and anisotropy related to rock textural arrangements, schistosity and weakness planes such as cracks and joints affect the P-wave velocity (VP). First, VP anisotropy of quartz-mica schist as a common type of widespread metamorphic rock was compared with VP anisotropy of jointed homogeneous limestone specimens to clarify effect of these two different types of anisotropies. The results showed that the VP anisotropy of quartz-mica schist texture is stronger than the VP anisotropy of jointed limestone, because all body of quartz-mica schist specimens have VP anisotropy behavior. Many rocks are anisotropic and degree of anisotropy varies from one rock to another. Several investigations have been carried out on VP anisotropy but there is not a unique comprehensive relation to represent the influence of different degrees of anisotropy on the VP for different rocks. The relation between VP and angle (θ) between the axis of symmetry (perpendicular to weakness planes) with the wave propagation direction was analyzed for a wide range of anisotropy degree using the results of nine different types of rocks including: Angouran quartz-mica schist, Golgohar mica schist, amphibole schist, mica-quart schist, Marcellus shale, Withby shale WUK47B, WUK70 and WUK2, and Veroia-Polymylos gneiss. A new simple empirical relation fitted to all groups of results was obtained to assess VP for different degrees of anisotropies with a good correlation of determination (R2 = 0.937), low RMSE (RMSE = 320 m/s) and low CV (CV = 7.0%). P wave velocity anisotropy can simply be predicted by the developed relation using only two parameters of VP0 and VP90. A VP anisotropy classification diagram was also developed based on the different values of ε.


2000 ◽  
Author(s):  
Robert F. Wideman, Jr. ◽  
Nicholas B. Anthony ◽  
Avigdor Cahaner ◽  
Alan Shlosberg ◽  
Michel Bellaiche ◽  
...  

Background PHS (pulmonary hypertension syndrome, ascites syndrome) is a serious cause of loss in the broiler industry, and is a prime example of an undesirable side effect of successful genetic development that may be deleteriously manifested by factors in the environment of growing broilers. Basically, continuous and pinpointed selection for rapid growth in broilers has led to higher oxygen demand and consequently to more frequent manifestation of an inherent potential cardiopulmonary incapability to sufficiently oxygenate the arterial blood. The multifaceted causes and modifiers of PHS make research into finding solutions to the syndrome a complex and multi threaded challenge. This research used several directions to better understand the development of PHS and to probe possible means of achieving a goal of monitoring and increasing resistance to the syndrome. Research Objectives (1) To evaluate the growth dynamics of individuals within breeding stocks and their correlation with individual susceptibility or resistance to PHS; (2) To compile data on diagnostic indices found in this work to be predictive for PHS, during exposure to experimental protocols known to trigger PHS; (3) To conduct detailed physiological evaluations of cardiopulmonary function in broilers; (4) To compile data on growth dynamics and other diagnostic indices in existing lines selected for susceptibility or resistance to PHS; (5) To integrate growth dynamics and other diagnostic data within appropriate statistical procedures to provide geneticists with predictive indices that characterize resistance or susceptibility to PHS. Revisions In the first year, the US team acquired the costly Peckode weigh platform / individual bird I.D. system that was to provide the continuous (several times each day), automated weighing of birds, for a comprehensive monitoring of growth dynamics. However, data generated were found to be inaccurate and irreproducible, so making its use implausible. Henceforth, weighing was manual, this highly labor intensive work precluding some of the original objectives of using such a strategy of growth dynamics in selection procedures involving thousands of birds. Major conclusions, solutions, achievements 1. Healthy broilers were found to have greater oscillations in growth velocity and acceleration than PHS susceptible birds. This proved the scientific validity of our original hypothesis that such differences occur. 2. Growth rate in the first week is higher in PHS-susceptible than in PHS-resistant chicks. Artificial neural network accurately distinguished differences between the two groups based on growth patterns in this period. 3. In the US, the unilateral pulmonary occlusion technique was used in collaboration with a major broiler breeding company to create a commercial broiler line that is highly resistant to PHS induced by fast growth and low ambient temperatures. 4. In Israel, lines were obtained by genetic selection on PHS mortality after cold exposure in a dam-line population comprising of 85 sire families. The wide range of PHS incidence per family (0-50%), high heritability (about 0.6), and the results in cold challenged progeny, suggested a highly effective and relatively easy means for selection for PHS resistance 5. The best minimally-invasive diagnostic indices for prediction of PHS resistance were found to be oximetry, hematocrit values, heart rate and electrocardiographic (ECG) lead II waves. Some differences in results were found between the US and Israeli teams, probably reflecting genetic differences in the broiler strains used in the two countries. For instance the US team found the S wave amplitude to predict PHS susceptibility well, whereas the Israeli team found the P wave amplitude to be a better valid predictor. 6. Comprehensive physiological studies further increased knowledge on the development of PHS cardiopulmonary characteristics of pre-ascitic birds, pulmonary arterial wedge pressures, hypotension/kidney response, pulmonary hemodynamic responses to vasoactive mediators were all examined in depth. Implications, scientific and agricultural Substantial progress has been made in understanding the genetic and environmental factors involved in PHS, and their interaction. The two teams each successfully developed different selection programs, by surgical means and by divergent selection under cold challenge. Monitoring of the progress and success of the programs was done be using the in-depth estimations that this research engendered on the reliability and value of non-invasive predictive parameters. These findings helped corroborate the validity of practical means to improve PHT resistance by research-based programs of selection.


Sign in / Sign up

Export Citation Format

Share Document