Long-Term Bond Durability of Fiber-Reinforced Polymer Bars Embedded in Seawater Sea-Sand Concrete under Ocean Environments

2018 ◽  
Vol 22 (5) ◽  
pp. 04018042 ◽  
Author(s):  
Zhi-Qiang Dong ◽  
Gang Wu ◽  
Xiao-Ling Zhao ◽  
Jin-Long Lian
2020 ◽  
Vol 12 (3) ◽  
pp. 168781402091288
Author(s):  
Suraksha Sharma ◽  
Daxu Zhang ◽  
Qi Zhao

Although numerous experimental and analytical investigations on the environmental effects on basalt fiber–reinforced polymer bars were carried out, degradation of the basalt fiber–reinforced polymer bar in seawater and sea sand concrete environment has been insufficiently analyzed. This work presents two distinct numerical approaches, degradation rate–based approach and diffusion-based approach, to investigate the durability of basalt fiber–reinforced polymer bars in seawater and sea sand concrete solution subjected to various temperatures (32°C, 40°C, 48°C, and 55°C). The degradation of the material was quantified using a simplified two-dimensional model of a homogenized basalt fiber–reinforced polymer bar in COMSOL Multiphysics software. Fickian diffusion provides basis for modeling diffusion-based approach. The findings from both the approaches suggested that the basalt fiber–reinforced polymer bar becomes more susceptible to degradation as the exposure temperature increases and results in greater geometrical deformities. The comparisons of experimental data, analytical solutions, and numerical results showcase that the present numerical models can predict the degradation of a basalt fiber–reinforced polymer bar in a seawater and sea sand concrete environment.


2017 ◽  
Vol 52 (15) ◽  
pp. 2103-2114 ◽  
Author(s):  
Mahdie Mohammadi ◽  
Majid Barghian ◽  
Davood Mostofinejad ◽  
Adel Rafieyan

The effects of such environmental conditions as alkali media at temperatures of 23℃, 40℃, and 60℃ were investigated on the fiber reinforced polymer-to-concrete bond strength. For this purpose, 42 specimens were strengthened via the externally bonded reinforcement and the externally bonded reinforcement on grooves techniques. The specimens were later subjected to the single-shear test after the specified durations of exposure to an alkaline medium. The particle image velocimetry technique was used to investigate such bond characteristics of the strengthened specimens as load-slip behavior, strain profiles, and strain fields along the fiber reinforced polymer-to-concrete bond. Experimental results showed that the specimens strengthened via the externally bonded reinforcement on grooves method exhibited ultimate bond loads by up to 50% higher than those strengthened via the externally bonded reinforcement method.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 614 ◽  
Author(s):  
Arya Uthaman ◽  
Guijun Xian ◽  
Sabu Thomas ◽  
Yunjia Wang ◽  
Qiang Zheng ◽  
...  

The usage of polymer composites in various engineering fields has increased. However, the long-term service performance of such materials under aggressive conditions is still poorly understood, which limits the development of safe and economically effective designs. In this study, the aging of an epoxy resin and its carbon fiber-reinforced polymer (CFRP) composites upon immersion in water, acidic, and alkaline solutions was evaluated at different temperatures. The service life of the CFRP composites under various conditions could be predicted by the Arrhenius theory. The thermal and mechanical analysis results indicated that the CFRP composites were more vulnerable to HCl owing to the higher moisture absorption and diffusion of HCl into their cracks. The scanning electron microscopy results showed that the polymer matrix was damaged and degraded. Therefore, to allow long-term application, CFRP composites must be protected from acidic environments.


Sign in / Sign up

Export Citation Format

Share Document