Machine Learning Approach to Decomposing Arterial Travel Time Using a Hidden Markov Model with Genetic Algorithm

2018 ◽  
Vol 32 (3) ◽  
pp. 04018005 ◽  
Author(s):  
Shu Yang ◽  
Ming Chen ◽  
Yao-Jan Wu ◽  
Chengchuan An
2018 ◽  
Vol 1 (1) ◽  
pp. 265-286 ◽  
Author(s):  
Wondimu Zegeye ◽  
Richard Dean ◽  
Farzad Moazzami

The all IP nature of the next generation (5G) networks is going to open a lot of doors for new vulnerabilities which are going to be challenging in preventing the risk associated with them. Majority of these vulnerabilities might be impossible to detect with simple networking traffic monitoring tools. Intrusion Detection Systems (IDS) which rely on machine learning and artificial intelligence can significantly improve network defense against intruders. This technology can be trained to learn and identify uncommon patterns in massive volume of traffic and notify, using such as alert flags, system administrators for additional investigation. This paper proposes an IDS design which makes use of machine learning algorithms such as Hidden Markov Model (HMM) using a multi-layer approach. This approach has been developed and verified to resolve the common flaws in the application of HMM to IDS commonly referred as the curse of dimensionality. It factors a huge problem of immense dimensionality to a discrete set of manageable and reliable elements. The multi-layer approach can be expanded beyond 2 layers to capture multi-phase attacks over longer spans of time. A pyramid of HMMs can resolve disparate digital events and signatures across protocols and platforms to actionable information where lower layers identify discrete events (such as network scan) and higher layers new states which are the result of multi-phase events of the lower layers. The concepts of this novel approach have been developed but the full potential has not been demonstrated.


2019 ◽  
Vol 47 (16) ◽  
pp. e91-e91 ◽  
Author(s):  
Evan D Tarbell ◽  
Tao Liu

Abstract ATAC-seq has been widely adopted to identify accessible chromatin regions across the genome. However, current data analysis still utilizes approaches initially designed for ChIP-seq or DNase-seq, without considering the transposase digested DNA fragments that contain additional nucleosome positioning information. We present the first dedicated ATAC-seq analysis tool, a semi-supervised machine learning approach named HMMRATAC. HMMRATAC splits a single ATAC-seq dataset into nucleosome-free and nucleosome-enriched signals, learns the unique chromatin structure around accessible regions, and then predicts accessible regions across the entire genome. We show that HMMRATAC outperforms the popular peak-calling algorithms on published human ATAC-seq datasets. We find that single-end sequenced or size-selected ATAC-seq datasets result in a loss of sensitivity compared to paired-end datasets without size-selection.


2021 ◽  
Author(s):  
Oney Erge ◽  
Eric van Oort

Abstract During drilling operations, it is common to see pump pressure spikes when flow is initiated, including after a connection or after a prolonged break in drilling operations. It is important to be able to predict the magnitude of such pressure spikes to avoid compromising wellbore integrity. This study shows how a hybrid approach using data-driven machine learning coupled with physics-based modeling can be used to accurately predict the magnitude of pressure spikes. To model standpipe pressure behavior, machine learning techniques were combined with physics-based models via a rule-based, stochastic decision-making algorithm. To start, neural networks and deep learning models were trained using time-series drilling data. From there, physics-based equations that model the pressure required to break the mud's gel strength as well as the flow of non-Newtonian fluids through the entire circulation system were used to simulate standpipe pressure. Then, these two highly different methods for predicting/modeling standpipe pressure were combined by a hidden Markov model using a set of rules and transition probabilities. By combining machine learning and physics-based approaches, the best features of each model are leveraged by the hidden Markov model, yielding a more accurate and robust prediction of pressure. A similar result is not achievable with a purely data-driven black-box model, because it lacks a connection to the underlying physics. Our study highlights how drilling data analysis can be optimally leveraged. The overarching conclusion: hybrid modeling can more accurately predict pump pressure spikes and capture the transient events at flow initiation when compared to physics-based or machine learning models used in isolation. Moreover, the approach is not limited to pressure behavior but can be applied to a wide range of well construction operations. The proposed approach is easy to implement and the details of implementation are presented in this study. Being able to accurately model and manage the pressure response during drilling operations is essential, especially for wells drilled in narrow-margin environments. Pressure can be more accurately predicted through our proposed hybrid modeling, leading to safer, more optimized operations.


Sign in / Sign up

Export Citation Format

Share Document